
216-89Bas J Sci 41(2) (2022)1                                                                         A A Sharhan et al.            

198 
 

                     This article is an open access article distributed under 

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license) 

).nc/4.0/-http://creativecommons.org/licenses/by( 

 

Numerical Simulation of Contraction Flows of Newtonian Fluid Using Taylor 

Galerkin Pressure Correction Finite Element Method 

2A. Fadhel Ihssan, 1Muslimawi-, Alaa H. Al,*1Alaa A Sharhan 

1. Department of Mathematics, College of Science, University of Basrah, Basra, IRAQ 

2. Ministry of Education \ General Directorate of Education of Basra, IRAQ 

*Corresponding author E-mail: eala.khashab.sci@uobasrah.edu.iq  

Doi:10.29072/basjs.20230202 

 

Received 26 Dec 2022; Received in revised form 28 Feb 2023; Accepted 13 May 2023, Published 31 

Aug 2023 

ARTICLE INFO ABSTRACT 

Keywords 

Contraction flow; 

Newtonian fluid; 

Taylor Galerkin finite 

element method; 

Navier-Stokes 

equation. 

 

In this study, numerical simulation of Newtonian fluids in contraction 

channels is performed based on the Taylor Galerkin-pressure 

correction finite element method (TGPC-FEM). Here, three different 

contraction channel geometries (4:1, 6:1, and 8:1) were simulated in 

this investigation. Usually, the continuity equation and momentum 

equation are governed this type of fluid. These equations are presented 

in our study in cylindrical coordinate system. This research examined 

the impact of varying Reynolds number and geometry area difference 

on the rate of convergence for solution components, as well as the 

influence of geometry area difference on level of velocity and pressure.  
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1. Introduction  

The study of fluid flow through contraction channels is critical for a variety of reasons, including 

its importance to human health and technological advancement. Fluid dynamics in abrupt 

contraction channels have been extensively studied, and many of these works have been published 

in the last few years (see, for example, [1–5]). In addition, in the fluid dynamics, we need a 

governing equations to describe the behavior of fluid. In this area the Navier-Stokes equations 

represent one of the most important model that is used to address the fluid flow. These equations 

consist of mass conservation equation (continuity equation) and momentum conservation [6, 7]. 

The main difficulty that faced by scientists when studying this type of equations is the inability to 

find out the exact solutions, which required resorting to numerical methods to overcome this 

problem. A Taylor-Galerkin pressure-corrected finite element technique is a very good option for 

resolving this issue with the Navier-Stokes equation. Townsend and Webster [8] were the first to 

suggest this strategy as a method for dealing with incompressible flows, including Newtonian and 

non-Newtonian fluids. This approach involves two methods, a Taylor Galerkin method and a 

pressure correction method. The Taylor Galerkin method is a two-step Lax-Wendroff time 

stepping procedure (predictor-corrector), extracted via a Taylor series expansion in time (Donea 

[9]). The pressure-correction method accommodates the incompressibility constraint to ensure 

second-order accuracy in time. The numerical solution of these equations involves the use of 

efficient and precise numerical techniques and methodologies. Many researchers have presented 

studies and research on a numerical solution using this method (see [10-14]). Thus, literature on 

(TGPC-FEM) for fluid flows is covered broadly (see for example [15-18]). The novelty of this 

work is studying Newtonian fluid flow in 4:1, 6:1, and 8:1 abrupt contraction channel using the 

Taylor Galerkin pressure correction finite element approach. This study focuses on fluid flow 

behavior under the influence of different Reynolds numbers and flow channel geometries. This 

research also discusses the behavior of velocity and pressure along the axis of symmetry under the 

impact of geometric change.  The mathematical model was the subject of the second section of 

this research project. We detailed the problem definition and boundary conditions, as well as the 

numerical approach used to solve the governing equation in the mathematical model represented 

by the (TGPC-FEM) in the third and fourth sections. Showing and discussing the results was done 

in the fifth section of this research. 
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2. Mathematical modeling 

The governing equations, which consist of continuity and momentum equations under isothermal 

condition and ignoring anybody forces may be present: 

∇ ⋅ 𝑢 = 0,                                                                                                                          (1)               

𝜌 (
∂𝑢

∂𝑡
+ 𝑢 ⋅ ∇𝑢) = −∇𝑝 + ∇ ⋅ (2𝜇𝑠𝑑).                                                                                         (2) 

The solvent viscosity (𝜇𝑠), density (𝜌), hydrodynamic pressure (p), and velocity (u) are the four 

parameters in these equations. In addition to that, the deformation tensor, is represented by the 

equation 𝑑 =
1

2
(∇𝑢 + ∇𝑢𝜏). By using the scaling 𝑅𝑒 = 𝜌

𝑈𝐿

𝜇
, the equation (Navier-Stokes) may 

also be written in terms of non-dimensional (Re) groups, where (U), (L), and (𝜌) stand for the usual 

flow velocity, length, and density, respectively. Thus, the Newtonian version of the momentum 

equation can be written in a non-dimensional form as follows: 

𝑅𝑒 (
∂𝑢

∂𝑡
+ 𝑢 ⋅ ∇𝑢) = −∇𝑝 + ∇ ⋅ (2𝜇𝑠𝑑).                                                                                       (3) 

3. Numerical method 

Three phases make up (TGPC-FEM), which employs a fractional step approach. To begin, we use 

a two-steps predictor-corrector technique to calculate the 𝑢∗ components, using the initial velocity 

and pressure fields as inputs. In the second stage, we use the Choleski method to determine the 

pressure difference (𝑃𝑛+1 − 𝑃𝑛)  and set 𝑢∗  as the controlling variable. In the third stage, we 

utilize the pressure difference (𝑃𝑛+1 − 𝑃𝑛)  and mid velocity (𝑢∗) to make an estimate for the 

velocity field (𝑢𝑛+1). As a direct consequence of this, the fractional step may be written as follows: 

Stage1a:
2𝑅𝑒

Δ𝑡
[𝑢𝑛+

1

2 − 𝑢𝑛] = 𝐿(𝑢𝑛, 𝑑𝑛) − ∇𝑝𝑛,                                                                              (4) 

Stage1b:
𝑅𝑒

Δ𝑡
[𝑢∗ − 𝑢𝑛] = 𝐿 (𝑢𝑛+

1

2, 𝑑𝑛+
1

2) − ∇𝑝𝑛,                                                       (5)                         

Stage2:∇2(𝑝𝑛+1 − 𝑝𝑛) =
𝑅𝑒

𝜃Δ𝑡
∇ ⋅ 𝑢∗,                                                                         (6) 

Stage3: 𝑢𝑛+1 = 𝑢∗ −
𝜃Δ𝑡

𝑅𝑒
[∇(𝑝𝑛+1 − 𝑝𝑛)].                                                                                       (7) 

Where, 
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𝐿(𝑢, 𝑑) = [∇ ⋅ (2𝜇𝑠𝑑) − Re 𝑢 ⋅ ∇𝑢].                                                                                                (8) 

For θ=1/2 the methodology employed in the solution is based on the Crank-Nicolson method, 

which provides better accuracy and stability compared to other methods and decreases time errors 

in the time-stepping scheme [19,20]. The following formulas can be used to calculate velocity and 

pressure findings:  

𝑢(𝑥, 𝑡) = ∑𝑗=1
𝐽𝑢  𝑢𝑗(𝑡)𝜙𝑗(𝑥),                                                                                       (9) 

 𝑝(𝑥, 𝑡) = ∑
𝑗=1

𝐽𝑝  𝑝𝑗(𝑡)𝜓𝑗(𝑥),                                                                                                           (10) 

Specifically, 𝐽𝑢 is the total number of nodes, and 𝐽𝑝 is the number of nodes at triangular vertices 

only. The nodal values of the velocity and pressure vectors are denoted by 𝑢𝑗(t)  and 𝑝𝑗(t), 

respectively. Fundamental interpolation functions for their respective numerical method are 

𝜙𝑗(𝑥) and 𝜓𝑗(𝑥), respectively. 𝑢∗ as well as pressure difference may both be represented using 

forms that are related to one another. Segmenting the domain Ω to trigonometric elements is very 

important to get very accurate results. When dealing with a triangular, both the mid-side and vertex 

nodes are utilized to compute velocity, but only the vertex nodes are used to compute pressure. 

The shape functions 𝜙𝑗(𝑥) have been selected for use as the quadratic basis function, and the shape 

function 𝜓𝑗(𝑥) have been selected for use as the linear basis function. Then, a matrix form of the 

TGPC corresponding to Equations (4-7), respectively, may be represented as follows [21].  

Step1a:[
2𝑅𝑒

𝛥𝑡
𝑀 +

𝜇𝑠

2
𝑆] (𝑈𝑛+

1

2 − 𝑈𝑛) = {−[𝜇𝑠𝑆 + 𝑅𝑒 𝑁(𝑈)]𝑈 + ℓ𝑇𝑃}𝑛,                    (11) 

Step 1b: [
𝑅𝑒

𝛥𝑡
𝑀 +

𝜇𝑠

2
𝑆] (𝑈∗ − 𝑈𝑛) = {−𝜇𝑠𝑆𝑈 + ℓ𝑇𝑃}𝑛 − 𝑅𝑒 [𝑁(𝑈)𝑈]𝑛+

1

2,                (12) 

Step2: 𝐾(𝑃𝑛+1 − 𝑃𝑛) = −
𝑅𝑒

𝜃𝛥𝑡
ℓ𝑈∗,                                                                          (13) 

Step3:
𝑅𝑒

𝛥𝑡
𝑀(𝑈𝑛+1 − 𝑈∗) = 𝜃ℓ𝑇(𝑃𝑛+1 − 𝑃𝑛).                                                                              (14) 

In this context,  𝑈𝑛,  𝑈𝑛+1  and 𝑃𝑛, 𝑃𝑛+1 are the velocity and pressure nodal vectors at time 𝑡𝑛 

and 𝑡𝑛+1, respectively. 𝑈∗ is an intermediate nodal velocity vector established in Step 1b. 

According to [22], M, S, N, ℓ, and K stand in for the matrices for mass, momentum diffusion, 

convection, divergence/pressure gradient, and pressure stiffness, respectively.  
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Where  

𝑀𝑖𝑗 = ∫ 𝜙𝑖𝜙𝑗𝑑Ω
Ω

,   𝐾𝑖𝑗 = ∫ ∇𝜓𝑖∇𝜓𝑗𝑑Ω
Ω

,   𝑁(𝑈)𝑖𝑗 = ∫ 𝜙𝑖(𝑈𝑛. ∇𝜙𝑗)𝑑Ω
Ω

 

(ℓ)𝑖𝑗 = ∫ 𝜓𝑖(∇. 𝜙𝑗)
Ω

𝑑Ω,   (𝑆)𝑖𝑗 = ∫ [∇𝜙𝑗: ∇𝜙𝑗 + (∇𝜙𝑗)𝜏]
Ω

𝑑Ω. 

4. Problem specification and boundary conditions 

The benchmark problem for this study is the flow of Newtonian fluid under isothermal 

condition via a contraction channel with a two-dimensional axisymmetric shape and contraction 

with ratios of 4:1 sharp, 6:1 sharp, and 8:1 sharp. Thus, the breadth of the outlet of all channels is 

only one unit long, while the length of the broad section of all channels is equal to ten units and 

the length of the narrow part of all channels is equal to four units. Whereas the width of the input 

for all channels is, correspondingly, 4, 6, and 8 units of length. In addition, the trigonometric 

elements of the meshes of the geometric figures of the constriction channels were taken in the 

same size region so that the study on the influence of changing the geometric figure on the 

constriction channel could be more accurate and objective. All of the different forms of mesh have 

been included, and the corresponding schematics for the various geometric configurations can be 

seen in detail in Figure 1. The characteristics of the finite element meshes used in our research are 

outlined in Table 1. 

Boundary conditions (BCs): The following describes the present configuration of the BC: 

(a) At the inlet of the channel, there is no radial velocity, and the flow is alluded to as Poiseuille 

(Ps) flow which denoted by 𝑢𝑧 = 2(1 −
𝑟2

𝑅2), where R denotes the channel's radial and 0 ≤

𝑟 ≤ 𝑅. The values of channels radial (R) with contraction ratios of 4:1, 6:1 and 8:1 are 4, 

6 and 8 respectively.   

(b) There is neither axial velocity nor radial velocity along the bottom wall of the channel.  

(c) The axial velocity is slipping on the axially symmetric line of the channel, whereas the 

radial velocity has no slip. 

(d) At the channel's outlet, there is no pressure. 

 All details for above are presented in Figure 2. 
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Table 1: statically of meshes elements 

Mesh Total Elements Total Nodes Boundary Nodes Pressure Nodes 

4:1 sharp contraction 1128 2387 244 639 

6:1 sharp contraction 1640 3419 276 890 

8:1 sharp contraction 2152 4460 308 1154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Structured finite element meshes (a) 4:1 sharp contraction (b) 6:1 sharp contraction (c) 

8:1 sharp contraction 

(a) (b) 

(c) 
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Figure 1: Flow geometry (a) 4:1 sharp contraction (b) 6:1 sharp contraction  (c) 8:1 sharp 

contraction 

 

5. Numerical results 

The flow fields of velocity and pressure are shown in Figure 3 for 4:1, 6:1 and 8:1 contraction 

channel with constant fluid parameters (Re=1 and 𝜇𝑠 =1). In all cases, according to the scales of 

the velocity field, that the velocity rises as we go closer to the outflow of the channel, and reaching 

to the maximum value at the outlet. That is, the velocity increases in the narrow section of the 

channel, and this is a clear application of the continuity equation (𝐴1𝑢1 = 𝐴2𝑢2), where the 

(c) 

(b) (a) 
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velocity increases when the area decreases [23]. This is a straightforward illustration of Bernoulli's 

principle, where the pressure exhibits the opposite behavior, that is, the pressure reduces as we go 

closer to the outlet of the channel in contrast to the velocity, which increases. In addition, we can 

see that the value of velocity that is present at the outlet of the contraction channel 8:1 is greater 

than the value of velocity that is present at the outlet of the contraction channel 6:1 and 4:1, despite 

the fact that all of these channels have the same diameter of the outlet. This is according to the 

continuity equation, a higher velocity at the outlet is required for the 8:1 channel since its wide 

section has a bigger area than the 6:1 and 4:1 channel's wide section. Table 2 shows data for the 

maximum velocity and pressure values in the three contraction channels and various Reynolds 

numbers. The results showed that increasing Reynolds number causes a decrease in the maximum 

fluid velocity, indicating that the relationship is inverse. From physical perspective, a rise in the 

density, as related by the Reynolds number, results in a decrease in velocity. As the embodiment 

of Bernoulli's principle, pressure behavior is the opposite of velocity behavior with respect to the 

relationship with Reynolds number. Moreover, the rise in density that relate with the Reynolds 

number results in an increase in the obstruction to fluid flow, which results in higher pressure. 
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Figure 3: Velocity and pressure fields of; (a) 4:1 contraction (b) 6:1 contraction, (c) 8:1 contraction 

(a) 4:1 contraction 

(b) 6:1 contraction 

(c) 8:1 contraction 
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(a) (b) 

Table 2: Max velocity and pressure for contraction channels with variation Re 

 

 

 

 

 

 

 

 

The velocity and pressure trajectories along the axis of symmetry are shown in (a) and (b), 

respectively, in Figure 4 for a constant set of parameters {Re = 5 and 𝜇𝑠 = 1} and a variety of 

geometries. The relationship between the velocity and the length of the axis of symmetry is a direct 

relationship, that is, the velocity increases with the increase in the distance crossed from z, and it 

is the maximum possible in the outlet. The influence of geometry area variation on increasing the 

velocity along the axis of symmetry is considerable. Refer to Figure 3 for more information on the 

behavior of the velocity and pressure. 

 

 

 

 

 

 

 

Figure 4: Axisymmetric line profile with 𝜇𝑠 =1, Re=5, geometry variation; (a) velocity, (b) 

pressure 

 

Re 
4:1 contraction 6:1 contraction 8:1 contraction 

Max v Max p Max v Max p Max v Max p 

1 31.16 879.91 68.62 2774.48 113.65 6794.62 

2 30.9 1162.4 62.95 4105.89 105.73 10639.47 

3 29.55 1434.4 59.03 5334.87 103.72 14220.02 

4 28.29 1692.69 56.6 6505.49 101.5 17668.48 

5 27.24 1940.54 56.14 7645.83 100.66 20881.22 

6 26.37 2180.12 55.49 8769.6 99.89 23364.18 
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The convergence rate of velocity and pressure is shown in Figure 5 with constant parameters (Re 

= 5 and 𝜇𝑠 = 1) for three setting of contraction. According to the findings, a higher convergence 

rate was shown by expanding the geometry surface area, in both velocity and pressure convergence 

rates. The reason for this is obvious: as we have demonstrated before, increasing the number of 

elements used to split geometry increases the amount of time needed to solve. 

 

 

 

 

 

 

 

 

Figure 5: Convergence profile with 𝜇𝑠 =1, Re=5, geometry variation; (a) velocity, (b)pressure 

The Reynolds number has a considerable influence on the rate of convergence of velocity and 

pressure. When the Reynolds number approaches its critical value, the convergence rates increase 

substantially, and vice versa. Table 3 illustrates the critical level of Reynolds number values for 

each contraction channel. The results demonstrated that when the contraction ratio of the flow 

channel increases, the critical level of Reynolds number decreases. Therefore, we notice that in 

this work, the critical Reynolds number is as high as possible in the 4:1 contraction channel and 

as low as possible in the 6:1 contraction channel. As previously demonstrated in Figure 5, the rate 

of contraction is directly correlated with the velocity, and the velocity is inversely proportional to 

the Reynolds number, as indicated in Table 2. So, we conclude that there is an inverse relationship 

between the Reynolds number and the flow channel's contraction ratio.  

 

 

 

(a) (b) 
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Table 3: Critical Reynolds number for contraction channels  

Contraction channel Critical Reynolds number (𝑅𝑒𝑐𝑟𝑖) 

4:1 30 

6:1 11 

8:1 6 

 

Convergence of velocity in a 4:1, 6:1 and 8:1 contraction channels under varying Reynolds number (Re) is 

shown in Figure 6. The convergence rates of velocity were shown to rise noticeably with rising Reynolds 

numbers. It may be said that there is a direct relationship between Re and the rate of velocity convergence. 

Increasing the Reynolds number causes it to approach its critical value, which necessitates more time steps 

to reach the solution and is terminated when the error reaches (E= 10−6). The geometry 8:1 has a greater 

rate of convergence than that in the case of 6:1 and 4:1. This is due to the fact that an increase in the 

geometry size results in an increase in the number of elements on which the geometry has been split. So, 

when the number of elements increases, the number of equations also goes up, which means you need more 

time to get the steady state solution. Moreover, under the same setting of parameters the pressure 

convergence  has same behaviors of velocity (see Figure 7). Through the current study, the normal stress 

𝜏𝑧𝑧 and first normal stress 𝑁1=𝜏𝑧𝑧 − 𝜏𝑟𝑟 along the centerline are illustrated in Figure. 8, for 

different setting of Re = 1, 2, 3, 4, 5. For both components, a constant 𝜏𝑧𝑧 and 𝑁1 levels are occurred 

through the channel section, with increase and then sharp decrease over that contraction region, 

with decline at the outlet. From the profiles one can observe that the maximum level of 𝜏𝑧𝑧 and 𝑁1 

increases when Re is raised with high level in 𝑁1. For example, with Re=10 the maximum level of 

𝑁1 is around 85 units, compared to 54 units with Re=1; almost O(36%) reduction. 
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Figure 6: Convergence of velocity with with 𝜇𝑠 =1, Re variation; (a) 4:1 contraction, (b) 6:1 

contraction, (c) 8:1 contraction 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 
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Figure 7: Convergence of pressure with 𝜇𝑠 =1, Re variation; (a) 4:1 contraction, (b) 6:1 

contraction, (c) 8:1 contraction 

 

 

 

 

 

 

 

(a) (b) 

(c) 
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Figure 8: Normal stress (𝜏𝑧𝑧 ), first normal stress (𝑁1) with 𝜇𝑠 =1, Re variation; 4:1 contraction 
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6. Conclusions 

Using the Taylor-Galerkin pressure correction finite element method, this study investigates the 

effects of varying the Reynolds number and the contraction geometry on the behavior of fluid 

flow. From the results, one can see that the maximum velocity decreases as the Reynolds number 

rises, whereas the maximum pressure increases.  An increase in the Reynolds number will produce 

an increase in the rate of convergence for both the velocity and the pressure. The rates of 

convergence for velocity and pressure go up as the size of geometry contraction 

increases. Therefore, the 8:1 flow channel has a larger level of convergence compared to 6:1 and 

4:1 flow. Furthermore, as the flow channel's geometry area is increased, the velocity and pressure 

along the axis of symmetry of the flow channel also rise. An inverse correlation exists between the 

contraction ratio of the flow channel and the critical Reynolds number.   
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النيوتونية باستخدام طريقة تايلور جاليركين لتصحيح الضغط  محاكاة عددية لتدفقات الانكماش للموائع 

 للعناصر المحددة

  علاء عبدالواحد شرهان1, علاء حسن عبدالله2, احسان فاضل عقيل3

 1قسم الرياضيات /كلية العلوم /جامعة البصرة, البصرة /العراق 

 2قسم الرياضيات /كلية العلوم /جامعة البصرة, البصرة /العراق 

 3المديرية العامة لتربية البصرة, البصرة/ العراق 

 

 المستخلص 

لتصحيح   تايلر جاليركين  باستخدام طريقة  الانكماش  قنوات  في  النيوتونية  للموائع  إجراء محاكاة عددية  تم  الدراسة،  هذه  في 

(  8:1، و6:1،  4:1الانكماش )هنا، تم محاكاة ثلاثة أشكال هندسية مختلفة لقناة   .(TGPC-FEM) الضغط للعناصر المحددة )

في هذا البحث. معادلة الاستمرارية ومعادلة الزخم هما المعادلتان الحاكمتان هذا النوع من الموائع. تم تقديم هذه المعادلات في 

معدل  دراستنا في نظام الإحداثيات الأسطوانية. وقد تناول هذا البحث تأثير اختلاف عدد رينولدز وفرق المساحة الهندسية على 

  التقارب لمكونات المحلول، وكذلك تأثير اختلاف المساحة الهندسية على مستوى السرعة والضغط.
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