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1.Introduction

One of the most widely used concepts in applied mathematics is the derivation concept, introduced
to describe the rate of change of a given function and is commonly used in the modeling of real-
world equations of this concept. Despite all the advantages of derivation in real-world modeling, it
has been observed over time that differential equations with ordinary derivations cannot meet the
needs of scientists due to the complexity that exists in real-world problems. So the concept of
fractional derivations with the initial questions of the great scientist Leibniz entered the arena then
a scientist named Euler took the first step in generalizing the symbolism for the derivation of
arbitrary functions taking into account the fractional values for the order of the derivation, years
later Lineville also pointed out the existence of the left and right derivations by proposing new ideas
and then defined the fractional integral operator in the continuation of the activities of these scientists
a scientist named Riemann used the Taylor series generalization to obtain a formula for the order
integral used a deficit. Since fractional derivations are one of the favorite topics of scientists in all
sciences, useful studies have been conducted in this field such as [3, 10, 11, 13-16]. On the other
hand, the Fisher equation is one of the equations of engineering, chemistry, and physics, so there
has been valuable research on it [1, 4, 5, 13-15]. In recent years, a derivation called the Caputo-
Fabrizio fractional derivation has been proposed [6, 7, 8, 9-14] and scientists have used this
derivation to solve differential equations according to analytical methods, in the meantime, the
Sumudu method is very effective in solving these types of equations [2, 7-11-15]. The thesis also
uses the Caputo- Fabrizio fractional derivation in solving the nonlinear Fisher reaction-diffusion
equation according to the Sumudu method [5-18]. we presented useful and important features of the
new fractional derivation. Because the main objective of this paper is to use the Caputo-Fabrizio
fractional derivation to solve the nonlinear reaction-Fisher diffusion equation using analytical
methods, to achieve this goal, in this part important theorems such as the existence of Sumudu
transforms, the Caputo-Fabrizio fractional derivation examination theorem is proven for specific
functions such as logarithmic and exponential functions. Fractional differential equations are widely
used in modeling many sciences such as physics, chemistry, and engineering. In this section
numerical simulation of the nonlinear equation of Fisher emission fractional differential equations
are crucial for modeling various scientific phenomena. In this section, we present the numerical

simulation of a nonlinear Fisher emission equation.
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The equation includes a Caputo-Fabrizio fractional derivative of order gamma, represented as
EDYapplied to the bivariate function u(x, t). This is equal to alpha multiplied by the second-order
partial derivative of u(x, t) with respect to x, plus beta multiplied by u(x, t) times one minus u(x, t)
raised to the power m, where m is greater than zero and gamma lies between zero and one. The
initial conditions specify that u(x, 0) equals zero for values of x between aand b. [19,20] We explore
different values of m and various fractional derivative orders. The function u(x, t) depends on both
x and t, with its first-order partial derivative with respect to x and its second-order partial derivative
with respect to x also considered. For computational purposes, we provide a routine to handle these
terms and solve the equation effectively.

2.PRELIMINARIES:

Definition 2.1:let f € H'(a, b),b > a,a € [a, b] then the new caputo-Fabrizio derivative of

fractional order is defined as:
, t—x
DE(f(1)) = I‘%Z)f;f (x) exp [—a E] dx (1)

where M () is the normalization function such that M(0) = M(1) = 1. But, if the function does

not belong to H(a, b) then, the derivative can be reformulated as.

DE(F®) =22 [*(F(©) - F(0)) exp|~aZ] dx )

Definition 2.2:let u € H1(0,b),b > 0,0 < y < 1, then the time fractional Caputo-Fabrizio
fractional differential Operator (C-FFDO) is defined as.

2—PMy) (* -
FpYu(t) =% i exp l_y(l%ys)l u'(1)dr
t>00<y<1, ®)

With a normalization function M(y) which is dependingony 3 M(0) = M(1) = 1.

Definition 2.3: the Caputo-Fabrizio Fractional Derivative Operator of order 0< y <

1is given by

CFnY _ 201-y) 2y t
DIu(®) = ey 4D + amgy Jo w(@de ()
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Similar to the usual Caputo derivative, the Caputo-Fabrizio operator yields zero when u is a
constant function. The main advantage of the Caputo-Fabrizio operator over the traditional Caputo

operator is that the new kernel does not exhibit a singularity at t = s

3. THE MAIN RESULTS

Theorem 3.1. The following ordinary differential equation with Caputo- Fabrizio derivation
of the fractional order [1]
¢ D) = £(2) f(0)#0
It has a non-obvious answer for0 < a < 1.

Proof: To verify this result, the Laplace transform is applied to both sides of Equation (1),

yielding:
L[ DEROI(S) = LIFD](s)
| e-s0f i r@a = £iF 1)
0
oo t —_ t —
[ a5t [ 1 wyenn | axe = 21701
0 0
On the other hand,

L, —a
JO f'(x) exp [m (t— x)] dx

That’s the same convolution of exp ( a(t)) and f'(x) so, by using the convolution feature

1-a
to transform Laplace we are going to have:
1

o) " F e exp [ ¢ - 0] dx] = £ O [ex [ ]| = 5F) - 7 =

It means we have:

fooo exp (—st) fotf’(x) exp [%] dxdt = (sF(s) —

F) (7=) (5)

Now equation (5) can be written as follows:
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T F© — ) () = FO) ©

-a

9 (s7(s) - f0) (ﬁ) = F(s)

By simplifying the above equation, we have:

sF(s) — F(0)
M(a) (m =F(s)
P =55 ™

By reversing the Laplace transform operator to the both side equation of (6)(7) relationship, we will
have:

0
Fo = LD

And this completes the proof.

Theorem 3.2:The Caputo-Fabrizio derivative is a fractional derivative, and f(t) is the function
on which this derivative acts . The Sumudu transform is applied to this fractional derivative.

The corrected form should be:

Fw) - f(0)

—a+au

S(“oPE)f (W) = M(@) 7

Proof: According to the definition of Sumudu and the Caputo-Fabrizio derivation have:

SCEDE(F(0) () =22 [ Lexp () [ LD exp 2D drar (®)
On the other hand,
[y LD exp [ (¢ — x)dx 9)

ar)

That’s the same convolution of exp (% (t)) so, by applying the convolution

feature to Sumudu transform, will have:
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SEEDOF )W) = X2 YO exp =2 (©0)]) |

dt

= —M(a)u S(—=

1-a

TOsexp[== ),

M(a) Fu)—-f(0) 1
= u( )( )

1-a u 1+—2y
1-a

=29 (Fa) - F(0) (%) (10)

1-a+au

(F(w) - f(0))

1—a+au

= M(a)

This completes the proof.

Corollary 3.2: For the desired natural number N and the n — times derivable function of we have:

M (o) d n+1 _
SEDEM(f(O) W) = 1 @ xp (o) ’;tnfl exp [ (¢ - D)drde
0

Proof. Considering the definition of the Sumudu transform, have:

ain _M(a) (7 Ldf(a) —a
S(ODEM(f D)) = 7 (—) g e [ (t = D)lddt
Can see that
D exp [ (¢~ 1)dr (11)

The convolutions are exp [% (t)] and £V (t). So, will have:

M(a) ) armti(e) -
SEEDO (D) =125 s exp (Z5) 1) (12)
M(a) df™ti(e) -
= 1—0; uS( dagn+i )S(exp (1—0;) t) (13)
M(a) Fw) £%(0) 1
= T Y ) (14)
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F)  sn POy 1
- M( ){ k=0 3n-k }1—a+au (15)
And the proof is completed.

Theorem 3.3. For the desired natural number 1 < n, the Caputo-Fabrizio fractional derivation of

order 0 < a < 1 fort™is defined as follows:

n-—1 .
aroms _ M(@) in!x”“‘1 1-a .
CSDt@)—T;(—D e (GRS

proof of a new fractional derivation for t"is as follows:

CEDE(t") = M(a) fo — (@™ exp( alt:—;) drt (16)
M(a)f nt"” 1exp( alt:—;) dr (17)
exp () f, nt"exp(:) dr (18)

First, calculate the following integral:

) Ot nt"1 exp(%) dr (19)
For simplicity, assume:

c=— (20)
Through part-by-part integral will have:

n—-1

exp(ct) dr = n exp(c1) |5 — %fotn(n — D" 2 exp(ct) dt (21)

fot nt
= %t"‘l exp(ct) — %fot n(n — 1)t 2 exp(ct) dt (22)

Similarly, have:
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1t -2 _ Tl(Tl—l) -2 1 t -3
Zfo n(n—1)t" 2 exp(cr) dr = = —t" " exp(t) — C_zfo n(n—1)(n—2)t" 3 exp(ct) dr

(23)
By continuing this trend, will have:
t — _ . nl tn—i—l
Jy nt* " exp(ct) dt = exp (c1) {Z?:ol —1) T o } (24)
So, by replacing 23 in 24 in the definition of the fractional derivation, have:
CEDE(t") = ex (—c1) ex (cr){ ) i 1} (25)
t p p (n—-i-1)! citl
M(a) nt i
e D ) 20)

Theorem 3.4:The Caputo-Fabrizio fractional derivation for the function In(t) is as follows:

n

o) at
M(a) —at 1«
CF na — = A/
oDf (ln(t))_l—anp(l—a> ln|t|+Z) P
n=

proof. Considering the new derivation, have:

M(a) [t d -
CFpa(in(e)) = 1%02 fo (D) exp (—a i — ;) dr

=T exp (25 [y 2exp (=) dz 27)

1—

If putc = ﬁ the expansion of the MacLaurin function of exp (c) is as follows:

exp(ct) = N, &L (28)

n!
And considering it, have:

()™
t exp (c1) _ t Xm0
fo Td‘[ = fo Td‘[
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t 1 c? c3 c*
=f0(;+C+;T+;T2 +ZT3 + )1

¢33 4t

B C2T2 t
= (Inltl + et + -+ S+ 50+ )

= In|t] + X, &L (29)

nn
This completes the proof.

Theorem 3.5: For the desired p>1, the Caputo-Fabrizio fractional derivation for t#is as follows:
CFna(+f BM(“) tB(— B _at
oDE(tF) = xp (— )P (=) Py (B, - 5)

proof. Considering the definition of fractional derivation, have:

M(a) t—1
CFpa(+B) — —(+8
ODt(t) T o (T )exp( 1—a>dT
M(a) (* t—1
= B-1 —
1—0(_[0'[% exp ( al—a)
= exp (—25) [y 1P exp (—a =) dr (30)
putc = % so have:
CEDE(tP) = ,B exp (— ct)f 1 exp(—ct) dr (31)

Through using the change of ct = —u variable will have:
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fot P Lexp(—cr)dr = fO_Ct(— %)ﬁ_l exp(—u) (— i) du

But considering the previous chapter know:
= (= 2F [, uf T exp(—u) du

So,

B

t 1
f Pl exp(—ct)dr = | ——5 Y(B, -
0 l1-«a

= () v (p)

By replacing 33 relationship with 34 will have:

at

)

1—«a

-B
“Dg(tF) = BB exp (- 2y (- —2) Ty (g — =

1-a 1-a) 1-a)
3.6 Algorithm for Nonlinear Fisher Diffusion Equation:

Input:

(32)

(33)

(34)

(35)

u, (x,t) = u(x, 0) (initial condition at t = 0 typically a given function like cos (x))

n (number of approximation steps)

m =6 (order of the nonlinear term)

B (a constant)

Y (parameter for fractional derivative)

s (a scaling factor)

M(y) (a function or operator related to the fractional derivative)

Output:
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approximate solution u,y, (x, t)
Stages:
Stage 1: Initial Condition

Set the initial condition for u,, = (x, t):

uy(x,t) = ulx,0)

This is the initial value of the solution at t = 0, which is provided in the problem (e.g.,
u(x, 0)=cos(x)). (36)

Set ugpy (%, 1) = up(x, t) as the initial approximation.

Stage 2: Iterative Update (Time Stepping)
For j = 1ton — 1, perform the following updates

fractional update of u, (x, t):

1+y—vys { 9% u, (x,t)
S{a

"o S = Bun ()1~ u"(x, t))}}

Upsq = Up(x,t) + s‘l{

S represents some fractional integration or operator,

a is a constant scaling factor,

2un (x,t)

The term 2 oz represents the second spatial derivative of u,,(x,t), (1- uj*(x,t)) isthe

nonlinear reaction term, M (y) might be related to a normalization factor for the fractional

derivative.

Stage 3: Update the Approximate Solution u,y,, (X, t)

Uapp(X, 1) = Up (X, L) + Ugpy (X, T)

Stage 4: Final Update for Next Iteration
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Set:

Ugpp (x,t) = uppr(x, t) + Uapp (x, t)

This updates the approximate solution for the next step in the iteration. The above steps are repeated
for n iterations to simulate the evolution of the solution wu(x,t) over time. the method handles
fractional time derivatives and the nonlinear Fisher equation. The results show the evolution of

u(x, t) under varying fractional order values of y, which affect the diffusion speed and behavior.

1.0 &

5L
0.0t

—0.5% :
“10%,

L)
Solution

Times

Figure 1: Numerical assimilation for (36) with m=6, =1

In the above figure, the numerical simulation of equation (36) is done withm = 6and f = 1. The

following is a numerical repetition of equation (36) with the initial condition of u(x, 0) = cosx,

Figure 2: Numerical assimilation for (36) withm = 6,8 = 0.85
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The results obtained from graphical representation show that the proposed model is significantly
dependent on the fractional order and there is a clear difference between the case where the fractional
order is 1 and the case which is 0.85. When the fractional order is 0.85, this model shows a feature
which in the case of the model with the integer this feature was hidden. The fractional order model
presented in Figure 2 shows that the limiting wave fronts, as well as their diffusion velocity, do not
depend on the initial values, but depending on the complexity of the environment that diffusion is

done through, these complexities can be seen by changing the order of the fraction.
Conclusions

The fractional derivative proposed by Caputo and Fabrizio has some interesting properties to
consider, among other things, it can describe heterogeneities and simple configurations with
different scales that clearly cannot be supervised by popular topical theories A complementary
application in learning the microscopic behavior of some materials is related to nonlocal connections
between atoms that are known to be important properties of materials. With these features, have
presented useful tools related to fractional order derivation. have used this new derivation to modify
the Fisher's diffusion equation. obtained the private solution by applying the Sumudu transform

related to the fractional Lagrange coefficient.
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