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     Binary data, denoting data having two alternative outcomes, is 

frequently observed across several research domains including finance, 

social sciences, psychology, and health. The logistic regression model 

is extensively employed for the analysis of binary data. It is essential 

to meticulously examine the detection and management of influential 

outliers to guarantee the suitability of the fitted binary logistic models. 

This article offers an extensive evaluation of various collective binary 

logistic techniques employed in regression models, emphasizing a 

comparison of the efficacy of four distinct logistic regression 

approaches. The methods encompass group Lasso binary estimates, 

group mcp binary estimates, group scad binary estimates, and binary 

regularization paths for generalized linear models by coordinate 

descent (glmnet) estimates. The comparisons derive from a simulation 

research aimed at determining which of these approaches exhibits 

superior performance across all regression scenarios. This review and 

comparison enable researchers and practitioners to discern the most 

effective methodologies for evaluating binary data via logistic 

regression. 
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1. Introduction  

     Logistic regression is a statistical technique widely employed for modelling binary dependent 

variables. It involves establishing a mathematical relationship between independent variables and a 

binary dependent variable, typically representing two categories as 0 or 1. The independent variables 

in this statistical model can take various forms, including continuous, discrete, binary, or 

combinations thereof. To handle atypical observations in data, researchers have developed diverse 

statistical models. For instance, Gelman suggested a model that modifies the chance of success in 

order to handle outlier problems in logistic regression [1].  . In Gelman's model, users are required 

to specify predetermined trimming values in advance. In a comprehensive study conducted by Wang 

et al. in 2004 [2], the researchers compared the performance of the Bayesian model averaging 

method with the stepwise selection method. Their in-depth analysis revealed that Bayesian Model 

Averaging exhibited superior performance compared to the stepwise selection method. Furthermore, 

Saker et al. (2009) [3] undertook a study involving both stepwise selection and best subset selection 

methods for variable selection in model fitting. Their findings indicated that both stepwise selection 

and best subset selection methods produced similar results. Wang in 2024 [4] used ordinal logistic 

regression for analysis the effective teaching practices. In 2024 Graham [5] studied the sparse 

network asymptotic for logistic regression under possible misspecification. Hou and Song [6] delve 

into the logistic regression transfer learning problem supported by differential privacy. Lewis and 

Battey [7] studied the inference in high-dimensional logistic regression models with separated data. 

Shareef et al. [8] used multinomial logistic regression for determining the factors Influencing blood 

pressure. Balboa et al. [9] evaluated several algorithms to predict evacuation decisions and found 

that being with a close family member is the most influential factor in responding to a fire alarm . 

Yuniarsih et al. [10] employed binary logistic regression model in the adoption of technological 

innovation of urban farming.        This manuscript aims to provide a comprehensive review of the 

logistic regression analysis as a powerful method for defining the relationship between binary result 

variables and independent variables. The focus of the review lies in the applicability of various 

logistic regression methods in a simulation study, offering insights into their effectiveness and 

limitations. 
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2. Material and Method  

2.1 General Form of Binary Logistic Regressions 

     Binary logistic regression is a powerful statistical method used to analyze the relationship 

between a binary dependent variable and one or more independent variables. In this type of 

regression, the dependent variable is binary, meaning it can have only two possible outcomes, often 

coded as 0 or 1. The primary aim of binary logistic regression is to model the probability of the 

binary outcome as a function of the independent variables.  In contrast to linear regression, which is 

used for continuous dependent variables, binary logistic regression models the log odds of the 

dependent variable belonging to a particular category. This makes it well-suited for predicting the 

likelihood of a binary event occurring based on one or more predictor variables. One of the key 

advantages of binary logistic regression is that it does not assume a linear relationship between the 

independent variables and the log odds of the dependent variable. Instead, it employs the logistic 

function, also known as the sigmoid function, to model the relationship. The logistic function ensures 

that the predicted probabilities fall within the range of 0 to 1, making it particularly suitable for 

modeling binary outcomes. This capability makes binary logistic regression a valuable tool for a 

wide range of applications, including in fields such as healthcare, marketing, and social sciences.      

Overall, binary logistic regression is an important statistical method used for predicting the 

probability of a binary outcome based on one or more predictor variables. It is widely employed in 

fields such as medicine, social sciences, and business for modelling and predicting binary outcomes. 

This versatile tool allows researchers and analysts to examine the relationships between input 

variables and the likelihood of a particular event occurring. Its applications range from predicting 

the likelihood of a patient developing a specific disease to forecasting the success of a marketing 

campaign. To model and predict binary outcomes based on relevant factors [11] : p =

P(Y = 1|X = x) =
eβ0+β1x

1+eβ0+β1x . 

     The function described above is a non-linear S-shaped curve, commonly known as the logistic 

regression function. In this function, 𝛽 represents the coefficient of the predictor or input variable 𝑥 

in a regression equation. Although this function can handle multiple input variables in a simplified 

form, it is essentially linear. It is considered superior to the logistic response function, p =

P(Y = 1|X1 = x1, .  .  . , Xp = xp) =
e

β0+β1x1+β2x2+.   .   .+βpxp

1+e
β0+β1x1+β2x2+.   .   .+βpxp

. 
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     The equation provided calculates the likelihood of the response variable being 1, taking into 

account multiple predictor variables. The model is inherently non-linear, but it is transformed into 

linearity through the use of the logit response function. The logistic response function equation is 

then utilized to achieve this transformation: 
p

1−p
= eβ0+β1x1+β2x2+.  .   .βpxp . 

The term 
p

1−p
 the above equation is called the odds ratio of the event. Taking the natural logarithm 

on both sides, log (
p

1−p
) = β0 + β1x1 + β2x2+.  .   . βpxp                                                                                          

Where p = P(Y = 1) = 1 − P(Y = 0) 

P(Y = 1), P(Y = 0) is the probability of success and failure of an observation respectively 

β0 = log − odds when all xjare 0 βj = increase in log −

odds when xj is increased by one unit, j = 1, … , peβj =

increase in odds when is increased by one unit, j = 1, … , p  

     The equation provided describes a linear relationship between variables and can be utilized to 

analyze and understand the connections between the variables of interest [11]. 

2.2 Logistic Curve  

     When the outcome or dependent variable takes on only two possible values, such as 0 and 1, and 

the predictor or independent variable is numerical, a logistic regression model is employed to 

analyze the relationship between the two variables. This model fits a logistic curve to the data, which 

is characterized by a distinct "S" shape known as a sigmoid curve [12]. The logistic curve depicts 

the probability of the outcome variable as a function of the predictor variable. In logistic regression, 

the logistic function is commonly used and can be defined by the following formula  

y =
ex

1+ex  .This equation can be extended to the form y =
eβ0+β1x

1+eβ0+β1x  
1

1+e−(β0+β1x) , which is graphed 

in Figure 1. 
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Figure 1: The logistic function 

2.3 Assumptions of Binary Logistic Regression  

     Binary logistic regression is distinct from general linear models in that it does not rely on certain 

key assumptions. First, it does not necessitate a linear relationship between the dependent and 

independent variables, nor does it require the error distribution to be normal or the errors to be 

homoscedastic. Additionally, it is not contingent on the measurement level of the independent 

variables .Nevertheless, binary logistic regression does have other assumptions that need to be 

considered [13]: 

1. The dependent variable must be binary. 

2. The dependent variable must be coded to represent the probability of an event occurring (𝑃(𝑌 =

1)). 

3. The model must be well-fitted, including all meaningful variables while avoiding unnecessary 

ones to prevent over-fitting. 

4. Each observation in the data should be independent, and the independent variables should exhibit 

minimal or no multicollinearity. 

5. There should be linearity between the independent variables and the log odds, but not necessarily 

between the dependent and independent variables. 
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6. Large sample sizes are required, as small samples can lead to an overestimation of the effect 

measure. Including more independent variables in the model also necessitates a larger sample size. 

2.4 Maximum Likelihood Estimation  

    The logistic regression model may look similar to a simple linear regression model, but there are 

important differences in the underlying distribution. In logistic regression, the dependent variable 

follows a binomial distribution, requiring a different approach to estimating the parameters.      The 

𝛼 and 𝛽 parameters in logistic regression cannot be estimated in the same way as in simple linear 

regression. Instead, the coefficients are typically estimated using the Maximum Likelihood 

Estimation (MLE) method. MLE involves finding the values of the parameters that maximize the 

likelihood function. The likelihood function represents the probability of obtaining the observed 

values of the dependent variable given the observed values of the independent variables. Similar to 

other probabilities, the likelihood ranges from 0 to 1, and the goal of MLE is to find the parameter 

values that make the observed data most probable under the assumed statistical model [13]. 

     This information is based on the work of Torosyan (2017) [6].P(Y = yi) = Pi
1−yi(1 − Pi)

yi , 

where Pi is the probability of the ith observation, yi is the value of random variable Y that takes value 

0 or 1. Assuming that our n observations are independent the likelihood of the data is equal to L =

∏ Pi
1−yi(1 − Pi)

yin
i=1 .The maximum Likelihood method will provide values for β0 and β which 

maximize L function.  

2.5 Classification table 

     The classification table, also known as a confusion matrix, is a valuable tool for evaluating the 

predictive performance of a logistic regression model. It is used to compare the observed values for 

the dependent outcome with the predicted values generated by the model. The table cross-classifies 

these values to provide insights into the model's accuracy [11]. 

     To illustrate, let's consider a scenario where a cut-off value of 0.5 is used. Any predicted values 

above 0.5 are designated as predicting an event, while any predicted values below 0.5 are considered 

as not predicting the event. This allows for clear categorization of model predictions, aiding in the 

assessment of its accuracy in predicting specific outcomes [14]. 
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Table 1. Sample Classification Table 

Observed Predicted 

 1 0 

1 a(True Positive) b(False Negative) 

0 c(False Positive) d(True Negative) 

 

where a and d are the number of cases that are predicted correctly, and b and c are the numbers of 

cases that are not predicted correctly. "In 𝑎 predictive model, '𝑎' represents the number of true 

positive cases, '𝑏' represents the number of false negative cases, '𝑐' represents the number of false 

positive cases, and '𝑑' represents the number of true negative cases."   When assessing the accuracy 

of a test that predicts binary outcomes, we can consider two key indicators: sensitivity and 

specificity. Sensitivity refers to the proportion of true positives (𝑌 = 1), while specificity refers to 

the proportion of true negatives (𝑌 = 0).  

Sensitivity is calculated using the formula 𝑑 / (𝑐 + 𝑑), and specificity is calculated using the 

formula 𝑎 / (𝑎 + 𝑏). It's important to note that the values of sensitivity and specificity are influenced 

by the chosen cut-off value.  For instance, if we increase the cut-off point, fewer observations will 

be predicted as positive. This leads to fewer 𝑌 = 1 observations being predicted as positive, causing 

a decrease in sensitivity. Conversely, more 𝑌 = 0 observations will be predicted as negative, leading 

to an increase in specificity. In an ideal scenario, a model would exhibit 100% sensitivity and 100% 

specificity, but in practical terms, achieving such results is rare. Therefore, understanding how 

sensitivity and specificity are impacted by the chosen cut-off value is crucial for accurately 

evaluating the performance of the model. 

2.6 ROC curve (Receiver Operating Characteristics) 

     The Receiver Operating Characteristic (ROC) curve is a valuable graphical tool used to evaluate 

the performance of diagnostic tests. Unlike the traditional two-by-two table, the ROC curve 

considers a wide range of cutoff values from 0 to 1. For each cutoff value, a corresponding two-by-

two table is constructed, allowing for a more nuanced analysis. The ROC curve visually represents 

the relationship between sensitivity (True Positive rate) and one minus the specificity (False Positive 

rate) as the cutoff value increases from 0 to 1. This visualization provides a comprehensive 

understanding of the test's performance across various cutoff values, enabling insights into its 

predictive power that go beyond what's obtainable from a standard classification table [14]. 
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. 

Figure2. An Example of the ROC Curve 

 

     The ROC curve, short for receiver operating characteristic curve, is a graphical plot that shows 

the performance of a binary classifier model across different discrimination thresholds. The curve 

illustrates the trade-off between the classifier's sensitivity and specificity. Sensitivity (true positive 

rate) measures the proportion of actual positive cases that are correctly identified, while specificity 

(true negative rate) measures the proportion of actual negative cases that are correctly identified.      

The area under the ROC curve (AUC) quantifies the overall performance of the model. It provides 

a single value to represent how well the model can distinguish between the two classes. A perfect 

model has an AUC of 1, indicating that it achieves perfect discrimination between the classes. On 

the other hand, an AUC of 0.5 suggests that the model's performance is no better than random 

guessing.      In practice, an AUC above 0.7 is generally considered indicative of a very good model, 

showing strong discriminatory ability. Models with higher AUC values are more effective at 

distinguishing between the classes, making them valuable for many applications in machine learning 

and predictive analytics. 

 

2.7 Regularization Paths for Generalized Linear Models via Coordinate Descent (glmnet) 

     In 2010, Friedman and Hastie [15] made significant contributions by introducing rapid algorithms 

for estimating generalized linear models with convex penalties. These algorithms were a 

breakthrough in the field as they could effectively handle a wide range of applications, including but 

not limited to linear regression, two-class logistic regression, and multinomial regression problems. 

The penalties involved in these models encompassed the lasso, ridge regression, and the hybrid 
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elastic net, making them highly versatile. The algorithms developed by Friedman and Hastie were 

based on cyclical coordinate descent computed along a regularization path. This unique approach 

allowed the algorithms to efficiently handle large-scale problems and effectively manage sparse 

features, which was a crucial advancement in the field of machine learning and statistical modeling. 

     In addition to their groundbreaking research findings, Friedman and Hastie generously released 

their R package to the public. This act of openness and generosity greatly contributed to wider access 

and application of their work, enabling researchers and practitioners to benefit from their innovative 

algorithms and models. 

2. Results and Discussions 

     In our current research section, we aim to perform a thorough comparative analysis of different 

logistic regression methods using a simulation study. This analysis is crucial due to the widespread 

use of these methods in real-world applications. To guarantee the robustness and precision of our 

results, we will generate simulated data from diverse sources and meticulously assess the efficacy 

of each logistic regression method. This rigorous evaluation process will enable us to make informed 

conclusions regarding the most suitable logistic regression method for our specific research context. 

yi
⋆ = xi

Tβ + εi,     i = 1,.   .   . , n  and yi = h(yi
⋆), 

where εi are the errors and h is a link function. For binary response data, the link function is given 

by h(y⋆) = I(y⋆ > 0), with I the indicator function. In real applications, y is the observed binary 

response and the interest is to predict y from knowledge of x. y⋆ is unobserved and used mainly for 

modelling purposes. We are considering error distributions similar to those in the studies by Yu et 

al. (2013) [16] and Li et al. (2010) [17]: 

∎Normal: N(0;  1)  

∎Normal: N(0;  9)  

∎ A mixture of two normal distributions:  0.1N(0, 10000) + 0.9N(0, 1)  

∎A t distribution with 1 degree of freedom : t1  

∎ A t distribution with 3 degrees of freedom: t3   

∎ Laplace distribution with location 0 and scale 10:  Laplace(0, 10) 

∎ A mixture of two Laplace distributions:  0.1Laplace (0, 1) +  0.9Laplace(0, 5)  

∎Skewed (skew):  
1

5
N (−

22

25
, 1) +

1

5
N(−

49

125
 , (

3

2
)2) +

3

5
N(

49

250
, (

5

9
)2)  
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∎Kurtotic: (kur):  
2

3
N(0,1) +

1

3
N(0, (

1

10
)2)  

∎Bimodal (bim):  
1

2
N(−1, (

2

3
)2) +

1

2
N(1, (

2

3
)2) 

∎Bimodal, with separate modes (bim-sep):  
1

2
N(−

3

2
, (

1

2
)2) +

1

2
N(

3

2
, (

1

2
)2) 

∎Skewed Bimodal (skew-bim): 
3

4
N (−

43

100
, 1) +

1

4
N(

107

100
, (

1

3
)2) 

∎Trimodal (tri): 
9

20
N(−

6

5
, (

3

5
)2) +

9

20
N(

6

5
, (

3

5
)2) +

1

10
N(0, (

1

4
)2). 

     These distributions were selected to have a median close to or equal to zero. We used a sample 

size of 50 for the simulation. 

    For the β vector, we consider the case of a large number of predictors, i.e. p ≫ n. Similar to Li 

et al. (2010) [13], we draw the independent variables x from a multivariate normal 

distribution,  N(0, Σx). The pairwise covariance between  xi and xj is set to be  (Σx)ij = r|i−j|. For 

the correlation r, we experiment both with r =  0.5 and r = 0.95. For the β values we consider three 

cases: 

(1) The values for the first three groups are given by  

  βj =

(0.5, 1, 1.5, 2,2.5, 2, 2, 2, 2, 2), (2, 2, 1, 1, 1,1, 3, 3, 3, 3), (1,1, 1, 2, 2, 2, 3, 3, 3, 3),  The 

coefficients are set to zero for all groups except the specified ones, reflecting a sparse 

scenario with structured grouping in the predictor variables. 

(2)   βj  =  (3, 1.5, 0, 0, 2, 0, . . . , 0), The coefficients are set to zero for all groups except the 

specified ones. This means that the model has a very sparse structure with specific group 

patterns present in the predictors. 

(3)   βj = 0.85  for all j, which corresponds to a dense case. 

(4) In this section, we will compare the following binary group logistic regression methods: 

∎"grp. lasso": binary group Lasso penalty (Yuan and Lin, 2006) [18]. 

∎"grp. scad": binary group smoothly clipped absolute deviation (Xiong et al., 2016) [19]. 

∎"grp. mcp": binary group minimax concave penalty (Xiong et al., 2016) [19]. 
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∎" glmnet": Regularization Paths for Generalized Linear Models via Coordinate Descent (Friedman 

and Hastie, 2010) [15]. 

For the grp. lasso, grp. scad and grp. mcp methods we use the R package grpreg and for the 

generalized linear models via coordinate descent, we use the R package glmnet.      In the analysis, 

we evaluated various methods and error distributions, calculating the AUC values over 500 iterations 

on a test set of the same size as the training set. Our investigation involved different scenarios for 

the β values, with r set at 0.5 and 0.95 for Tables 2 and 3, and r set at the same values for Tables 4 

and 5. Additionally, Tables 6 and 7 explored the case of all βs equal to 0.85, with r at 0.5 and 0.95.      

The results, presented in Tables 2, 3, 4, 5, 6, and 7, revealed no significant differences between three 

prediction approaches for grMCP, grSCAD, and the regularization paths for generalized linear 

models via coordinate descent (glmnet R package). Interestingly, the analysis indicated that the 

grLasso R package performed as the best-performing method in most cases. 

Table2: Average AUC values over 500 iterations (with standard deviations in brackets) for n = 50, p = 100, 

𝑟 = 0.5, and 𝛽 values as in case (1).The best mean is indicated in bold. 

 grLasso grMCP grSCAD glmnet 

N(0,1) 
0.787 

( 0.102) 

0.701 

(0.123) 

0.775 

(0.104) 

0.735 

(0.123) 

N(0,3) 
0.772 

(0.107) 

0.685 

(0.121) 

0.758 

(0.112) 

0.714 

(0.136) 

Normal M. 
0.666 

(0.116) 

0.613 

(0.114) 

0.66 

(0.115) 

0.629 

(0.122) 

t1 
0.736 

(0.118) 

0.661 

(0.124) 

0.728 

(0.118) 

0.703 

(0.132) 

t3 
0.776 

(0.111) 

0.688 

(0.126) 

0.76 

(0.116) 

0.727 

(0.133) 

Laplace 
0.62 

(0.114) 

0.58 

(0.101) 

0.618 

(0.112) 

0.585 

(0.106) 

Laplace M. 
0.728 

(0.122) 

0.643 

(0.124) 

0.718 

(0.122) 

0.689 

(0.138) 
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Table3: Average AUC values over 500 iterations (with standard deviations in brackets) for n = 50, p =

100, r = 0.95, and β values as in case (1). The best mean is indicated in bold. 

Skew 
0.786 

( 0.109) 

0.698 

(0.125) 

0.774 

(0.108) 

0.741 

( 0.13) 

Kur 
0.773 

( 0.113) 

0.693 

(0.126) 

0.763 

( 0.118) 

0.732 

(0.134) 

Bim 
0.788 

( 0.099) 

0.693 

( 0.123) 

0.769 

( 0.11) 

0.736 

( 0.131) 

bim − sep 
0.776 

(0.11) 

0.689 

(0.122) 

0.765 

(0.107) 

0.731 

(0.127) 

skew − bim 
0.771 

(0.109) 

0.684 

(0.124) 

0.763 

(0.109) 

0.716 

(0.134) 

Tri 
0.774 

(0.111) 

0.687 

(0.127) 

0.76 

( 0.112) 

0.732 

(0.128) 

 grLasso grMCP grSCAD glmnet 

N(0,1) 
0.778 

(0.107) 

0.69 

(0.122) 

0.763 

(0.113) 

0.955 

(0.036) 

N(0,3) 
0.778 

(0.107) 

0.698 

(0.119) 

0.763 

( 0.107) 

0.949 

( 0.044) 

Normal M. 
0.73 

(0.119) 

0.664 

(0.12) 

0.721 

( 0.124) 

0.911 

(0.06) 

t1 
0.755 

(0.117) 

0.677 

(0.126) 

0.744 

(0.119) 

0.931 

(0.052) 

t3 
0.774 

(0.108) 

0.69 

(0.124) 

0.767 

( 0.107) 

0.954 

(0.039) 

Laplace 
0.696 

(0.122) 

0.645 

(0.119) 

0.698 

(0.115) 

0.877 

(0.08) 
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Table4: Average AUC values over 500 iterations (with standard deviations in brackets) for n = 50, p =

100, r = 0.5, and β values as in case (2). The best mean is indicated in bold. 

Laplace M. 
0.761 

( 0.114) 

0.679 

(0.126) 

0.75 

(0.117) 

0.939 

(0.046) 

Skew 
0.773 

(0.109) 

0.69 

(0.121) 

0.768 

(0.103) 

0.956 

(0.041) 

Kur 
0.784 

(0.107) 

0.698 

(0.128) 

0.771 

(0.112) 

0.956 

(0.038) 

Bim 
0.781 

(0.111) 

0.688 

(0.13) 

0.771 

(0.111) 

0.956 

( 0.041) 

bim − sep 
0.772 

(0.112) 

0.686 

(0.121) 

0.763 

(0.11) 

0.956 

(0.039) 

skew − bim 
0.776 

(0.111) 

0.686 

(0.125) 

0.759 

(0.119) 

0.957 

(0.033) 

Tri 
0.775 

( 0.108) 

0.696 

(0.123) 

0.768 

(0.106) 

0.956 

(0.04) 

 grLasso grMCP grSCAD glmnet 

N(0,1) 
0.927 

( 0.046) 

0.949 

(0.033) 

0.948 

(0.034) 

0.949 

(0.037) 

N(0,3) 
0.817 

(0.082) 

0.839 

(0.088) 

0.832 

(0.082) 

0.823 

(0.1) 

Normal M. 
0.527 

(0.067) 

0.521 

(0.057) 

0.525 

(0.07) 

0.525 

(0.061) 

t1 
0.825 

(0.085) 

0.845 

(0.092) 

0.843 

(0.077) 

0.822 

(0.118) 

t3 
0.908 

(0.054) 

0.931 

(0.04) 

0.928 

(0.042) 

0.927 

(0.048) 
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Table5: Average AUC values over 500 iterations (with standard deviations in brackets) for n =

50, p = 100, r = 0.95, and β values as in case (2). The best mean is indicated in bold. 

Laplace 
0.528 

(0.078) 

0.519 

(0.071) 

0.522 

(0.078) 

0.518 

(0.062) 

Laplace M. 
0.655 

(0.12) 

0.652 

(0.133) 

0.659 

( 0.122) 

0.653 

( 0.129) 

Skew 
0.942 

(0.043) 

0.963 

(0.03) 

0.962 

(0.031) 

0.987 

(0.015) 

Kur 
0.938 

(0.042) 

0.958 

(0.03) 

0.957 

(0.03) 

0.957 

(0.042) 

Bim 
0.94 

(0.043) 

0.96 

(0.032) 

0.959 

(0.033) 

0.96 

(0.036) 

bim − sep 
0.94 

(0.046) 

0.961 

(0.035) 

0.96 

(0.036) 

0.966 

(0.033) 

skew − bim 
0.937 

(0.042) 

0.955 

(0.033) 

0.954 

(0.034) 

0.956 

(0.036) 

Tri 
0.942 

(0.044) 

0.963 

(0.03) 

0.962 

(0.031) 

0.967 

(0.033) 

 grLasso grMCP grSCAD glmnet 

N(0,1) 
0.934 

(0.046) 

0.957 

(0.031) 

0.956 

(0.033) 

0.98 

(0.017) 

N(0,3) 
0.868 

(0.063) 

0.89 

(0.061) 

0.886 

(0.054) 

0.927 

(0.037) 

Normal M. 
0.56 

(0.095) 

0.552 

(0.093) 

0.56 

(0.095) 

0.618 

(0.124) 

t1 
0.854 

(0.076) 

0.879 

( 0.069) 

0.871 

( 0.075) 

0.918 

(0.052) 
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Table6: Average AUC values, over 500 iterations (with standard deviations in brackets) for n =
50, p = 100, r = 0.5, and β values as in case (3). The best mean is indicated in bold. 

t3 
0.919 

(0.051) 

0.943 

(0.035) 

0.941 

(0.038) 

0.971 

(0.02) 

Laplace 
0.549 

(0.092) 

0.547 

(0.095) 

0.55 

(0.096) 

0.598 

(0.121) 

Laplace M. 
0.742 

(0.111) 

0.746 

(0.13) 

0.753 

(0.111) 

0.826 

(0.091) 

Skew 
0.942 

(0.043) 

0.963 

(0.03) 

0.962 

(0.031) 

0.987 

(0.015) 

Kur 
0.939 

(0.042) 

0.961 

(0.03) 

0.96 

(0.03) 

0.985 

(0.017) 

Bim 
0.942 

(0.046) 

0.964 

(0.029) 

0.962 

(0.031) 

0.988 

(0.014) 

bim − sep 
0.946 

(0.039) 

0.965 

(0.029) 

0.964 

(0.029) 

0.99 

( 0.011) 

skew − bim 
0.941 

( 0.039) 

0.962 

(0.029) 

0.961 

(0.029) 

0.985 

(0.014) 

Tri 
0.941 

(0.043) 

0.963 

(0.029) 

0.962 

(0.031) 

0.989 

(0.013) 

 grLasso grMCP grSCAD glmnet 

N(0,1) 
0.591 

(0.096) 

0.541 

(0.074) 

0.588 

(0.093) 

0.573 

(0.097) 

N(0,3) 
0.596 

(0.098) 

0.542 

(0.075) 

0.579 

(0.091) 

0.583 

(0.103) 

Normal M. 
0.546 

(0.076) 

0.52 

(0.06) 

0.541 

(0.075) 

0.539 

(0.075) 

t1 0.569 0.536 0.563 0.563 
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Table7: Average AUC values over 500 iterations (with standard deviations in brackets) for n = 50, p =

100, r = 0.95, and β values as in case (3). The best mean is indicated in bold. 

(0.089) (0.073) (0.087) (0.091) 

t3 
0.596 

(0.098) 

0.542 

(0.075) 

0.579 

(0.091) 

0.583 

(0.103) 

Laplace 
0.541 

(0.074) 

0.523 

(0.061) 

0.538 

(0.069) 

0.525 

(0.065) 

Laplace M. 
0.568 

( 0.088) 

0.533 

(0.07) 

0.567 

(0.088) 

0.561 

(0.093) 

Skew 
0.599 

(0.103) 

0.551 

(0.081) 

0.595 

(0.098) 

0.58 

(0.1) 

Kur 
0.6 

(0.097) 

0.546 

(0.078) 

0.591 

( 0.093) 

0.584 

(0.1) 

Bim 
0.6 

(0.094) 

0.548 

(0.076) 

0.588 

(0.089) 

0.577 

(0.095) 

bim − sep 
0.607 

(0.099) 

0.551 

(0.08) 

0.594 

(0.094) 

0.576 

(0.1) 

skew − bim 
0.587 

(0.096) 

0.543 

(0.075) 

0.587 

(0.094) 

0.57 

(0.097) 

Tri 
0.602 

(0.097) 

0.545 

(0.077) 

0.593 

(0.095) 

0.581 

(0.102) 

 grLasso grMCP grSCAD glmnet 

N(0,1) 
0.602 

(0.103) 

0.546 

(0.078) 

0.591 

(0.096) 

0.811 

(0.121) 

N(0,3) 
0.598 

(0.105) 

0.546 

(0.081) 

0.595 

(0.1) 

0.79 

(0.125) 
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Normal M. 
0.578 

(0.095) 

0.541 

(0.077) 

0.574 

(0.09) 

0.719 

(0.133) 

t1 
0.577 

(0.094) 

0.534 

(0.071) 

0.569 

(0.092) 

0.767 

(0.134) 

t3 
0.607 

(0.101) 

0.549 

(0.08) 

0.591 

(0.094) 

0.809 

(0.121) 

Laplace 
0.561 

(0.089) 

0.531 

(0.071) 

0.557 

(0.085) 

0.688 

(0.13) 

Laplace M. 
0.589 

(0.098) 

0.543 

(0.074) 

0.583 

(0.093) 

0.771 

(0.134) 

Skew 
0.595 

(0.092) 

0.537 

(0.066) 

0.585 

(0.091) 

0.795 

(0.129) 

Kur 
0.599 

(0.094) 

0.546 

(0.076) 

0.593 

(0.093) 

0.8 

(0.123) 

Bim 
0.599 

(0.099) 

0.544 

(0.08) 

0.59 

(0.098) 

0.809 

(0.124) 

bim − sep 
0.599 

(0.097) 

0.55 

(0.082) 

0.593 

(0.095) 

0.81 

(0.115) 

skew − bim 
0.602 

(0.099) 

0.546 

(0.076) 

0.59 

(0.093) 

0.806 

(0.118) 

Tri 
0.599 

( 0.098) 

0.547 

(0.076) 

0.588 

(0.095) 

0.799 

(0.124) 
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Figure2: Comparison of Average ROC Curves over 500 Iterations Under Various Error 

Distributions: Normal (0, 1), Laplace Mixture, t3, and bim. 

4. Conclusions 

In this paper, our objective is to conduct a thorough comparison of regression methods in scenarios 

where the response variable is binary, utilizing simulated data. Upon extensive simulation studies, 

we have found compelling evidence that the grLasso R package consistently outperforms other 

methods, especially in cases where there is a low correlation. This conclusion is based on a 

comprehensive analysis of the average ROC curve. Moreover, our results indicate that the glmnet R 

package emerges as the top-performing method in situations characterized by high correlation. This 

comprehensive comparison provides valuable insights into the performance of various regression 

methods under different conditions. 
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 دراسة محاكاة لطرق اختيار المتغيرات الجماعية للاستجابة الثنائية

 

 حسين عبد الرحمن هاشم 

 لوم ، جامعة دهوك، دهوك، العراق قسم الرياضيات، كلية ال

 المستخلص 

مجالات بحثية مختلفة مثل البيانات الثنائية، التي تشير إلى البيانات التي تحتوي على نتيجتين محتملتين فقط، شائعة الاستخدام في  

التمويل والعلوم الاجتماعية وعلم النفس والطب. يسُتخدم نموذج الانحدار اللوجستي على نطاق واسع لتحليل البيانات الثنائية. ومع  

ال اللوجستية  النماذج  المؤثرة والتعامل معها لضمان ملاءمة  المتطرفة  القيم  في تحديد  بشكل شامل  التحقيق  المهم  ثنائية ذلك، من 

الملائمة. تقدم هذه المقالة مراجعة شاملة للعديد من الأساليب اللوجستية الثنائية الجماعية المستخدمة في نموذج الانحدار وتركز على  

 mcp الثنائية، وتقديرات مجموعة Lasso مقارنة أداء أربع طرق انحدار لوجستي محددة. تتضمن هذه الأساليب تقديرات مجموعة

الإحداثي scad قديرات مجموعةالثنائية، وت الانحدار  تقديرات  المعممة عبر  الخطية  للنماذج  الثنائي  التنظيم   الثنائية، ومسارات 

(glmnet).   تستند المقارنات إلى دراسة محاكاة مصممة لتحديد أي من هذه الأساليب تعمل بشكل أفضل عبر جميع سيناريوهات

 الانحدار. من خلال هذه المراجعة والمقارنة، يمكن للباحثين اكتساب رؤى حول أكثر الأساليب فعالية لتحليل البيانات الثنائية باستخدام 

 .الانحدار اللوجستي
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