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1. Introduction

Lacunary interpolation using fractional degree spline functions is a specialized area within
numerical analysis, focusing on approximating functions through splines of fractional order. This
approach is particularly useful for solving fractional differential equations, which arise in various
fields such as physics, engineering, and finance. Lacunary interpolation involves constructing an
interpolating function that is defined only at a subset of points, known as lacunae. This method is
advantageous when data is sparse or when certain values are missing. The use of spline functions,
which are piecewise polynomial functions, allows for smooth approximations between these points.
Fractional degree splines extend traditional spline functions by allowing for non-integer degrees,
which can provide greater flexibility and accuracy in approximation. The fractional degree splines
are particularly effective in capturing the behavior of functions that exhibit fractional dynamics,
which are common in real-world applications. The existence of a unique spline function that satisfies
certain conditions is crucial. Theorems have been established to demonstrate the conditions under
which these splines exist and are unique, particularly for fractional orders. An essential aspect of
lacunary interpolation is the analysis of error bounds. This involves establishing how closely the
interpolating spline approximates the actual function, which can be quantified through various

mathematical theorems. The methods of lacunary interpolation

using fractional degree splines have been applied to solve fractional differential equations
numerically. The results show that these methods can yield accurate approximations, making them
suitable for various scientific and engineering applications. Recent research has focused on
extending the capabilities of lacunary interpolation with higher-degree splines. Studies have shown
that using higher-degree splines can improve the accuracy of the interpolation significantly,
especially in complex applications involving fractional calculus. Refer to the survey article [1-4] for
the full background information. To solve differential equations of fractional Order, Faraidun K.
Hamasalh [5-6] found the error bounds to fractional polynomial spline in a work. We used the
identical lacunry data in the current work, and we demonstrated that the error bounded more
accurately than Karwan H. F. Jwamer [7]. The similar method was applied by several writers, albeit

with different lacunary data; for instance, see [8-11]. The structure of this work is as follows: The

degree three spline function that interpolates the lacunary data (%,%,g) is defined. A few theoretical
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findings about the uniqueness and existence of the degree three spline functions are presented, along

with a study of convergence analysis [12-16].

We present a three degree spline interpolation for one dimensional and given sufficiently smooth
function f(x) defined on 1=[0,1] denote the uniform partition of | with 6:0 = x, < x; <+ <

Xn-1 < X, = 1 be a consistent division of the interval [0,1], when x; =ih,i=10,1,..,n;
nh = 1. The class of spline functions S,,(3,3,n) is defined as follows:

{5,(3,3,n) is the class of spline functions Sgs(x) such that Ss(x) is a polynomial of degree less than
or equal to 3 on each sub interval [x;,x;,1],i = 0,1,...,n — 1 and S5(x) € C3[0,1] with n knots}.
The class of spline functions Sp(3,3,n) any element Ss(x) € S, (3,3,n)in this work satisfies the

following requirements:

sP) = fP0) =yPp=5223i=01..,n—1, (i)
sV o) = fP ) =y Pp =235 (il
si(iv1) = Sip1(xip1) = f(xi31) = Y30 =01, ..., n = 2, (iii)
sV (ien) = s Ctian) = FP ) =y p=5,2,25i=01,..,n -2, (iv)
So(x0) = f(x0) = Y0,Sn-1(xn) = f(x) = ¥ . (V)

2. Existence and uniqueness

This section covers the existence and originality of our approach, which we now discuss. The
similar error estimate for the much less smooth class of functions € C3[a, b], can be computed as
follows in terms of the modulus of continuity under uniform partition and simplified limited

condition:

Theorem 1: There is only a unique spline function Ss(x) € S,(3,3,n) that satisfies conditions i

through v.

Proof: If it's feasible, let's say that
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So(x) when xy, <x < x,,
Ss(x) =< Sij(x) when x;<x<x;,,, i=1,..,n—2,
Sp—1(x) when x,_; <x<x,.

subsequently as a result of the situations (i—Vv). We possess the ability to write.

1 1 3 3
— 2 =
So(x) =yo + —(x ;0) )’0( ) + (x — x0)bo 1 + —(xg_j;o) 3’0(2) + (x — x0)*by 2
4

Gxos_(3)

T Yo T (x —x0)° bo3 , (vi)
8
1 1 3 3
( 1) ( 1)
5i(x) = b + — y( ) + (x—x)bi; + == y( ) + (x — x;)°b;
-z (5)
+ ﬁ v, 7+ (x—x)° b3, (vii)
8
1 1 3 3
(r=xn-1)2 |3 (x-xn-12 |3
Sp-1(x) = bn—l,O + Hlergi)l + (x — Xp—1) by 11t HTI ,Sz_)l
2
(=07 (5)
X—Xp—
+(x = xp_1)?bp_12 + Tﬁl}’nz_l + (x —xp-1)* bp_13, (viii)

8

Using (iii) and (iv) with p = i = 0, obtain the coefficients in sy (x). We get the following linear

system of equations:

-1 (1 1 3 2 (5
Box +2hboy +2h? oy = W7 -y -y - %y@] , (ix)
1 (3 3 5
b, +2hbyz = g _5[)’1(2) - )’0(2) —h )’0(2)] : (x)
-1 5 5
bos = ZhT 5 -y, (xi)

Solving these equations yields:

bos = 202 [3 (5 ) = (8 59
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b2 =?h‘§ l(yl(%) - (i)) h(2y1(5)+ yo(s)) : (xiii)
bos = 1—@3 yl(E) —yo(E)l, (xiv)

The coefficients in s;(x), k = 0,1, ..., n — 2 can be obtained using (i) we arrive at the following

linear equation system.

1 3 5
bit10 — big — hbj1 — h*b;, — h3 b3 = h y( ) T h y( ) + 15\/—h y( ) (xv)

1 1 3 2 (2
by +2h bz +2h? by = h by ) %yi(z)] , (xvi)
1 (2 3 5
bi,Z + 2h bi,3 = gh_f[yi(fz - yl'(Z) —h yi(Z)] ) (XV")
1B 5
bz = Zh7a(y2) — i( )) - (xviii)
Solving four equations yields:
1 (3 3 1 5 5
b = Zni0%) -3 - Eriyl) 4,9, (xix)
1 (L £l 5 5 3 3
by = 2RO -y L2 (16y,fi)1 - y@) —sh <2yi(jz + yi(z))], ()
1 (L 1 3 3
breno — bio = ZHTyG) + (2= 1) 9P - EhipE) 4 (5 - 29), )
7.5 (3 : :
+ %hz [y,gfr)l + (% - 31) yi(Z)] , (xxi)
The coefficients of s,,_, (x) are obtained by applying (ii) and (v) to them.
1 (1 3 (3 s (3
bn,o - bn—1,0 = %’ﬁygi)l + hbn—l,l + %hj)’,gz_)l + hzbn—1,2 15vm h5y,gz_)1
+h3 b, 13, (xxii)
1 1 1 3 5
bp_11+ %hbn—l,Z + ghz bn_13 = gh_5[<y1£2) - y1S2_)1> - h%g )1 hzy,g )1] (xxiii)
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1 3 3 5
bp-12+ 2hby_13 = gh_5[<)’£2) - y,gi)1> - hy,gz_)l] , (xxiv)
T, L s s
bp_13 = gh 2()’52) - ,52_)1 : (xxv)

When we solved four equations, we arrived at:

bp-12 = gh_%[(gyr?) - 33’7?_)1) —h <2y§) + y,@)], (xxvi)
bpoyy =0 (y,@ - y,@1> ~ Ty <2y@) + yg) + 3% b2 <16y§) _ yr@l) o)
buo = bn-10 = = R + (2-1) y,ff_)l] ~Th b + (5 - %)y,ﬁi]

+ Fﬁo h;[yrgg) + (§ - 31)3’1@1]- (xxviii)

Being a non-singular matrix, we can see that each of the mentioned coefficients has its own unique
determination.

The proof for Theorem 1 is complete.
3. Convergences analysis and bound errors:
In this section, we demonstrate the following lema and therm.

Lemmal:let f € C3[0,1], v, = 2b;o — 2y; and V411 = 2biy10 — 2Yis1

Then: [vie11] < X552 3wy (F 1) - via| < SRPws(fih) , =01, ..,n—1

9
Proof: -
Since viy = 2b;o — 2y; and viiq1 = 2bi410 — 2V

forx; <x<x;.,1=12,..,n— 2 we have from (xix)

1 (1 1 3 (3 3
Bis10 = bio = ghi[yi(jz +(3-1) y & - i) 4 (5-%) 7

12
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5 5 5
+ 3% bz lylg-zl-)l +(2-31) yi(z)l
1 1
2 (Zbi+1,0 —2Yi41 + 2)’i+1) -5 (2bio — 2y; + 2y;)

=l (G- - [+ (52955

12

Ve (%), @
+ﬁh2l16yk+1+<?_31>yi l

Viena ~Via _ VT Af (3) | (4 @] _v= 2] () 16
st = Rl (G- ) - (53

3 ey 4 (2-31) Y

180 ¥ - il T Vi T

by using Taylor series expansion for fractional f(x) € ¢3[0,1], about x; we have

5(i+1)

5i .
vir1a] S == RPws(FR) = v < SRPws(fR) , i=01,..,n—1

Theorem 2: let f € €3[0,1] and S5(x) € S,(3,3,n) be a unique spline function
satisfying the condition of Theorem 1. Then
[|s8”C0) = FP@|| < T h3 wy(F; ), p = 0 5)3 and we(f; h) denotes the

modulus of continuity of £, Where

83
fﬁ ,when x; < x < xj44
83 h <x<
18 ,when Xj_X_Xj+1
8
- L << < . ; . 1. 5
=13 ,when x; < x < xj44 , j=0n—1iandp=0()2
8
3 ,when x; < x < x4
1 ,when x; < x < x;,4
\ 1 ,when x; < x < xj44
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122+5j . .
(A22+45)) ,WhenijxijH,]:n—l,L

— 18 —
T=94 andp =3
' ,when x, < x < x4

Proof: - forx; < x < x4, j =1,2,. — 2 ,we have from (vii)
|50 = F@ 0| = [6 b5 = FO@)

by using Taylor series expansion for fractional f(x) € c*[0,1], about x; we have:

2 4@ ., 430G K 8 s ()
Yie = V-1 +\/—h Vily + hyiko +ﬁf12yk_1 t o Vit 15\/—h2yk 1
+h—3y(3)(a ), Xpoq <y <X (xxix)
31 1/, k-1 1 k»
@_ @ 2,1, 5 4 3, w2
Y =Vt \/_;hZJ’k—1 + hylgi)1 + ﬁhZYkﬂ + Z%&Z 15\/_ th(3)(a ),
Xpoq < 0y < Xy, (xxx)
r ’ 2,2 (%) " ( ) ) ;
Yk =Vk-1t \/_Ehzyk_l + hy1+ 7= 3\/— hzyk 1 += y (a3), xp—1 < az < xy, (xxxi)
3 3 5
> > 2, L, > 4 3 ..
y,EZ) = y,Ei)l +t=heye + hy,gi)l + 5202y (@), xeer < ay <, (oxxii)
2 1 (©)
Vi =Y+ 2heyy + hyO(as), xen <as < Goxxiii)
( ) @ 2 2 (3) .
V.. =yt \/—Ehzy (@g), xXp—q < ag < Xy, (xxxiv)
3’153) =y®(a;) w1 < a7 < xp, (xxxV)

Putting = x; , k = i + 1 in(xxxiv)- (xxxv) and (xviii) we obtain:
s = FO@| =6 bz — O] < ws(f,h), (ooxvi)

Also putting = x,,_1 , k = n in(Xxxiv)- (xxxv) and (XXv) we get:
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[s:2,00 = FO@)| = (6 bpors = FO@| < ws(f ),

and

putting x = x, k = 1 in(xxxiv) — (xxxv)and (xiv)we have:

|50 = F@ )| = [6 b0z = FO@| < ws(f,h)

since s — O = 1f 6P - FO 00 + 5P - FB ooy

By using (xxxvi) and (i) we get:

1

PO

2
SIO S

Y- e

5200 - FO00| < wwy (s,

By using (xxxvii) and (ii) we obtain:

9 - O <1

1 =

5@ ) - FOe0| < Biws (1),

Also using (xxxviii) and (i) we have:

e - Bl < X

5200 - FO | < haws (),

5
2 h%yi(Z) + 6h b5

Because s;'(x) = 2b; , + =

570 = 1) = A (5060 = FO) + 20y + =
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15700 — £ GO < h|sP @) = FO )| + S hws (; h)
Putting = x; , k =i + 1 in (Xxxii)- (Xxxv) , (xix) and (xxxix) we get:
|s7'() = £ GOl < hws (f; h) + 2 hws (f; )

|5/ (6) = £ ()| < Zhws(f; h) (xlii)

1 (2
also since s;,_(x) = 2by_1, + \/%hiyrgz_)l + 6h by_13

2 1 (3
S,’ll_l(x) —f"(x)=h (57(13_)1(96) — f(3)(x)) + an—l,Z + ﬁhfy(z)l + hf(3)(x) — f”(x)
putting = x; , k = nin (Xxxii)- (Xxxv), (xxvi) and (xxxvii) we obtain:

Is-1 () — £ (| < hws(f; 1) + 2 hws (f; )

Is7-1(x) — £ ()] < 2hws (3 ) (xliii)

1 5
Now s/ (x) = 2 by, + %hf yO(Z) + 6h b3

1 5
S0 = f(x) = 2 by, +=h2 y &)+ 61 by — 1)
" _fu =h 3 _ (3 b ihl (;) h 3) _
so (x) — f"(x) So (X) = f(x) ) + 2oz + =h2 yy* + R (x) — f7(x)
putting = x; , k = 1 in (Xxxii)- (xxxv), (xiii) and (xxxviii) we have that:

|5/ () = £ ()| < Shws(f5 h) (xliv)

because s(%)(x) - f(%) (x) = I;C %(S{'(t) - ")+ SL-G) (x;) — f(%) (%)

D - 1B = s - o) since s e = D)

Using (xlii) and (i) we get:
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s - rBw)| < Shiwa(im. (xIv)

3

ecause 52 () — B = X s, (0 = 170 + 52, ) - B e

n n-1

S@ ) - G = I %(s,’{_l(t) — f"(©)) since s@) ) = FP @)

n-1 n-1

Using (xliii)and (ii) we get:

& - @l < S haws (£ ). (xIvi)

n-1

Now 8 - B G = 1 (6510 - 70 + 5P i) - PO

S0 - FO = 1 s o) - ) since s @) = & )

Using (xliv) and (i) we get:

s(@(x) ~ D w)| < Lrawy (i), (xlvii)
Since
2 1 (3 4 5
si(x) = f'(x) = by + \/—Ehfyi(Z) + 2hb;; + Eh%yi(Z) +3h%b; 3 — f'(x)
si(x) = f'"(x) =b;; + ih%y(%) + h[2 b;, + ih% y(%) +6h b5 — f"(x)]
i 1,1 \/E i 1,2 \/E i 1,3
2y - i - 2r ) B (6 by - £ 00)
~ZFD0) + ()

Putting = x; ,k =i+ 1 in (xxxi)- (xxxv), (xlii) and (xxxvi) we obtain:

I5/(0) = £/ (Ol < Zh2ws (f; B, (xlviii)
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1 (3 3 (8
Because s,_1(x) = by_q1 + j—EhEy(Z) + 2hby,_1, + %hEy(Z) + 3h%by_13

n-1 n-1

, ' 2 1 (3 ENC '
Sp—1(x) = f'(x) = bp_q1 + ﬁhzygi)l + 2hb,_q1, + ﬁhzy,gi)l +3h*by_13 — f'(%)

1 (2 1 (2
$ha G0 = 1100 = bas + 21y D 4 h(2 by + 2 3 4 6h by — 100

3 (2 3 (2 2
+m By, - 0o - = h2 3, - S [6by 15— fO0]
~2FD0) + hf ()
Putting = x; , k = n in (Xxxi)- (xxxv) , (xliv) and (xxxvii) we get:

|sn—1(x) = f' () < h2 w3 (f; h),

3 5
, I 4 323
If So(X) = bO,l + \/_EthO(Z) + Zhbo’z + ﬁhzy(SZ) + 3h2b0'3

2 16 436, a2 /
55(x) — f(x)—b01+\/—_h2y0 +2hb02+?h2y0 +3h2by 5 — f'(x)

’ lJ _ 2 h% (%) hb 4 h% (%) hzb !
So(x)—f(x)—b0,1+\/_E Voo 2 0,2+E Yo+ 3h%byz — f(x)

2 1 (3) 2 .1 (3) "
so(x) — f(x)—b01+\/—_h2y0 +h[2boz+Th2 Yo +6hbys—f(x)]

iy = o0 - ZaE - Epey, - FO@)
~2FO00) + hf" ()

2 1 (8 h?
600 = /() = bo + 7= W)+ hlsy o) - o] - — 57 0 = FP @)
/A

b - - a2 0 ) 4 )
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Putting = x; , k = 1 in (Xxxi)- (xxxv), (xliii) and (xxxviii)we have:

156(0) — £/ GO < Z h2ws (f; h) 0]

since s (x) — F8) ) = 1 (st0) = F1(©) + 5P ) — FO )

i
1
2

s - 16 = 1 2510 - @) sinee 5 ) = PO

By (i) and (xlviii)

Si(%)(x) _ f@)(x) < %hgm (f;h) , o

ecause 5. () — B w) = I sy (®) — /@ + 52,000 - r D)

n n-—1

5@ = 1800 = I “(sha(®) — @) since s, () = B

n-—1 n-—1

By (ii) and (xlix)

s 0 - D < Erwarim, (i
now sgg)(x) B = Iy *(s6(0) = f'(©) + Sgg) ) - By
by (i) and (1)

60 - 060 = 17 Hsa0) - @) sinee s = 1B )

1 1 5
D — 1O < Erbws(rm, (i)
Because
1 (L 3 (2 5 (3
si(x) = by + j—EhEyi(Z) + hb;; + %hiyi(Z) +h2b;, + ﬁhEyi(Z) +h3 by
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: ()

1 (3 3 (3
Si(x) - f(X) = bi,O + \/%h}yi(Z) + hbi,l + %hgyi(z) + hzbi,z + ISE\B/E hEyi
+h® b3 — f(x)
(x) — o4+ 2hs ) ba 3) ( ) N
500 = () = bug + Ehay ™ 4 S hey b phiy ™ = () + GO

©) G)
+h[by1 + = hzy +2hbi; + 5= hzy +3h%b;3 — f'(x)]
3 3 5 s 2 1 2 "
_%_Thzyi(z) _ %hZJ/i(Z) _ h? [Zbi,z + \/%hzyi(z) + 6h bi_3 - f(x)]

Lty 2 0+ e b — O]+ O

+ =

si(x) = f(x) = h[s;(x) = f' (x)]——[ i) =] + [ s — )]

+3[2bio — 2] + = hy()+ hy()+1w— yi(g)—f(x)+hf’(x)
—%h%yi(g) = y()+fh2 y() L+ O+,

5:(0) = £00) = RIs{(@) = £/ (O] = =[5/ (@) = £ 0] + = [sP @) = FO 0]

T v N s v o e

s (2 5 s () _r2,, ?
- Ly i L P )+ 00 4,

Putting = x; , k =i+ 1 in (xxix)- (xxxv), lemmal, (xlviii), (xlii) and (xxxvi) we get:

|5:(0) — FO] < 222 R3wy (f; h)

. 2 1 (5 « 30
Since sp_1(x) = byp_10+ \/_Ehzy(i)l + hby_11+ ﬁhzy,gz_)l +h?bn_1,

n

5
hyrg)1+h3bn 13

15\/—
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2 1 (3 NG
Sp-1(xn) — f(x) = bp_1 + \/_EhZJ’,SZ_)l + hby_q1 + ﬁhzy,gz_)l + h?by_1

5
15\/—hyyg)1+h3 n13 f(X)

: ) 0 s ()

sn-1(0) = F) = bp_yo + = h2y, ) + 5= hay ) + == hay ) — F(O) + hf'(x)

3 5
+h[bp_11+—= hzy( )1 + 2hby,_q, + _hzy( )1 + 3h2b,_ 1,3 — f'(x)]

n n

2 3 (3 4 5 (2 h? 2,1 (3 "
- \/_ﬁhzyrgz—)l - ﬁhzyrsz_)l Y [an—1,2 + \/_Ehzyygz_)l + 6h bn—1,3 - f (X)]

sy B ey s B e, L - fO ) +E O
Sna 00 = £ ) = hlsp 1 () = F/G0] = 04 — £7C)] + iy,
: (3

1 4 =
L2 = FO] + 3 2bnso = 2] + 1= hiy,?)

( ) fx)+hf'(x) — —hzy( ) nh;y(g)

15\/—h y" 1 n-1_ n—-1
1.5 (6 h? ., h3
+=h Y,Ez_)l -5 () + ;f(”(x) + Yn-1

Sn-1(%) = f(x) = hlsp_,(x) = f'(0)] - h—[ 1(0) = f7 (0] + hZ}',S )1

FE 0 = PO + vy + kD - )

) )

15fh y,g )1 fQ) +hf'(x) - hzyn 1T rh Yno1

1,5 (3) w3 (3)
t=he o+ f (x) + yn-1

Putting = x; , k = n in (xXix)- (xxxv), lemmal, (xxxvii), (xliii) and (xlix) we get:
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[122+5(n-1)] h3

Ispo (1) = fGo)] < B2 DNy (5, py

2,1 () s 2 (), g 5 (), .3
Let So(X) = yo + \/_Ehzyo + hbo,l + ﬁhzyo + h bo’z + 15\/E hzyo + h b0,3
1 (L 3 (2 5 (S
So(x) = f(x) =y + %hEyO(Z) + hby 1 + %hEyO(Z) + h%bg, + 15?5 hEyO(Z)

+h3 by 3 — f(x)

500 = F0) = o + iy + iy + i) 4 )

3

1 = 3 E
+h[bg; + %h5y§2) + 2hbg , + %hﬁygz) +3h%bys — f'(%)]

2

NI

2

s 2 1 ) "
th \/Ehz Yo + 6h b0,3 - f (.X')]

s 5 (3) w2
0 —ﬁhzyoz —7[2 b0,2+

+\/i7_rh§ yo(;) _ h?zfn(x) + %3 [6 bys — f(3)(x)] + %Bf(3) (x)

h2

50() = £00) = h[sj(0) = £/ (0] =L [s§ @) = F/ 0] + 2 [s§ @) = FO )]

2

1 G, a2 (G, 8 2 () :
+y0+ﬁh2y0 +ﬁhzyO —I—Ehzyo —f(x) +hf'(x)

)

2 > e 5 (3, 1,5 (3)_n2, R 3)
—Zh” —sEhn Tt Eh YT - M)+ ()
Putting = x; , k = 1 in (xXix)- (xxxv), (xxxviii), (xliv) and (I) we get:

|50(x) = FOO)| < S R3ws(f; h)
This concludes Theorem 2's proof.

3. Conclusion

The purpose of the research described in this article was to construct and evaluate the lacunary
spline function. The Caputo fractional derivative for the polynomial spline approach served as the

foundation for the proposed scheme. The study's findings revealed the accuracy and efficiency of
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the devised scheme in determining these kinds of boundary convergences. Additionally, the method
explores the intricacies of the fractional polynomial spline, a novel approach that combines to
determine fractional spline. The process is meticulously designed to manage fractional situations for
fractional polynomial splines, and an examination of truncation mistakes played a crucial role in its
creation. Researchers and professionals in the domains of fractional calculus and numerical analysis

may find value in the study's findings.
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