

Some results on nil-injective rings

Ferman A. Ahmed*, Abdullah M. Abdul-Jabbar

Department of Mathematics, College of Science, Salahaddin University-Erbil, Kurdistan Region - Iraq.

*Corresponding authors E-mail: ferman.ahmed@su.edu.krd

https://doi.org/10.29072/basjs.20240101

ARTICLE INFO

ABSTRACT

Keywords

Trivial extention, nilpotent elements, nilinjective, Wnilinjective. Let R be a ring. A right R-module is called nil-injective if for any element ω is belong to the set of nilpotent elements, and any right R-homomorphism can be extended to $R \to M$. If R_R is nil-injective, then R is called a right nil-injective ring. A right R-module is called Wnil-injective if for each non-zero nilpotent element ω of R, there exists a positive integer n such that $\omega^n \neq 0$ that right R-homomorphism $f: \omega^n R \to M$ can be extended to $R \to M$. If R_R is right Wnil-injective, then R is called a right Wnil-injective ring. In the present work, we discuss some characterizations and properties of right nil-injective and Wnil-injective rings.

1. Introduction

In this article, R is an associative ring with identity, and All R-modules are unital. We denote $r_R(\omega)$ and $l_R(\omega)$ to the right annihilator and the left annihilator of ω , respectively. The set of nilpotent elements, the set of unit elements, the set of right singular elements and the Jacobson radical of R are denoted by N(R), U(R), $Z(R_R)$, and J(R), respectively. Also, by \mathbb{Z}_n and \mathbb{Z} , we mean the set of integers modulo n and integer numbers, respectively. In addition, an R-module M is called p-injective if for any principal right ideal I of R and any right R-homomorphism $g: I \rightarrow$ M, there exists $Y \in M$ such that g(v) = vY, for all v in I, which was first introduced by Ming in [9]. In [10] also, Yue Chi Ming generalized p-injective, which is np-injective. A right R-module M is called right np-injective if for any $\omega \notin N(R)$ and any R-homomorphism $f: \omega R \to M$ can be extended to $R \to M$, or equivalently, for any $\omega \notin N(R)$ and any R-homomorphism $f: \omega R \to M$, there exists $m \in M$ such that f(x) = mY, for all $Y \in \omega R$. So, the ring R is called right np-injective if R_R is np-injective. Wei and Chen defined weakly np-injective in [7]. A right R-module M is called weakly np-injective if for any $\omega \notin N(R)$, there exists a positive integer n such that $\omega^n \neq 0$ and any right R-homomorphism $f: \omega^n R \to M$ can be extended to $R \to M$. Or equivalently, for any $\omega \notin N(R)$, there exists a positive integer n such that $\omega^n \neq 0$ and any R-homomorphism $f:\omega^n R\to M$ there exists $m\in M$ such that f(x)=mY, for all $Y\in\omega^n R$. If R_R is weakly npinjective, then R is a right weakly np-injective ring. It is easy to check that every right np-injective module is right weakly np-injective. Wei and Chen [6] generalized p-injective to nil-injective. They have defined that a right R-module M is called nil-injective, if for any $\omega \in N(R)$ and any Rhomomorphism $f: \omega R \to M$ can be extended to $f: R \to M$, or equivalently, for any $\omega \in N(R)$ and any *R*-homomorphism $f: \omega R \to M$ there exists $m \in M$ such that f(x) = mY, for all $Y \in \omega R$. So, the ring R is called right nil-injective if R_R is nil-injective. A right R-module M is called Wnilinjective if for any $0 \neq \omega \in N(R)$, there exists a positive integer n such that $\omega^n \neq 0$ and any right R-homomorphism $f: a^n R \to M$ can be extended to $R \to M$. Or equivalently, for any $\omega \in$ N(R), there exists a positive integer n such that $\omega^n \neq 0$ and any R-homomorphism $f: \alpha^n R \to M$ there exists $m \in M$ such that f(x) = mY for all $Y \in \omega^n R$ [6]. A ring R is called semiprimitive ring if J(R) = 0 [1]. We found that if R is right continuous ring and $R_{R/J(R)}$ is nil injective ring, then R is semiprimitive. In the matrix ring, If $M_n(R)$ is a right Wnil-injective ring, for some $n \ge 1$ 2, then *R* is a right nil-injective ring.

2. Nil-Injective Rings

In this section, we consider some examples and primary results about nil-injective. Wei and Chen [6] are poved that a ring R is a right nil-injective if and only if $l_R(r_R(\omega)) = R\omega$, for every $\omega \in N(R)$. We found some non-tivial examples of nil-injective rings via those theorem. Recall that if the ring of scalars R is commutative, then for all $\kappa \in R$ and $\mu \in M$, we have $\kappa \mu = \mu \kappa$. Let R be a ring and M a bimodule over R. The trivial extension of R and M is $R \propto M = \{(\kappa, \mu) : \kappa \in R, \mu \in M\}$ with addition defined componentwise and multiplication defined by $(\kappa, \mu)(\nu, \chi) = (\kappa \nu, \kappa \chi + \mu \nu)$ [5]. So, we obtain that for any $\kappa \in N(R)$, for $(\kappa, \mu) \in S' = R \propto M$, there exist $n \in \mathbb{Z}^+$ such that $\kappa^n = 0$, then $(\kappa, \mu)^{n+1} = (\kappa^{n+1}, (n+1)\kappa^n\mu) = (0,0)$, for every $\kappa \in N(R)$ and for every $\mu \in M$. Thus, the set of nilpotent elements in $R \propto M$ is given by: $N(R \propto M) = \{(\kappa, \mu) | \kappa \in N(R) \text{ and } \mu \in M\}$. In addition, we found some examples which are not p-injective rings but they are nil-injective rings:

Example 2.1 Let $S = R \propto M = \mathbb{Z} \propto \mathbb{Z}_4 = \{(\kappa, \mu) | \kappa \in \mathbb{Z} \text{ and } \mu \in \mathbb{Z}_4\}$ be a ring with addition defined componentwise and multiplication defined by $(\kappa, \mu)(\nu, \chi) = (\kappa \nu, \kappa \chi + \mu \nu)$. Now, $N(S) = \{(0,0),(0,1),(0,2),(0,3)\}$. Firstly, $l_S(r_S((0,0))) = \{(0,0)\} = S(0,0)$ and $l_S(r_S((0,1))) = \{(0,\mu)|\mu \in \mathbb{Z}_4\} = S(0,1)$. Secondly, $r_S((0,2)) = \{(\kappa,\mu)|\kappa \in <2> \text{ and } \mu \in \mathbb{Z}_4\}$. So, $l_S(r_S((0,2))) = \{(0,2\mu)|\mu \in \mathbb{Z}_4\} = S(0,2)$. Thirdly, $r_S((0,3)) = \{(\kappa,\mu)|\kappa \in <2> \text{ and } \mu \in \mathbb{Z}_4\}$. So, $l_S(r_S((0,3))) = \{(0,\mu)|\mu \in \mathbb{Z}_4\} = S(0,3)$. Thus, S is right nil-injective ring. But, S is not right p-injective ring because $(2,0) \in S$. Then, $r_S((2,0)) = \{(0,2\mu)|\mu \in \mathbb{Z}_4\}$. So, $l_S(r_S((2,0))) = \{(\kappa,\mu)|\kappa \in <2> \text{ and } \mu \in \mathbb{Z}_4\}$. Thus, $l_S(r_S((2,0))) \neq S(2,0)$. Hence, S is not right p-injective ring.

Example 2.2 Let $S = \mathbb{Z} \oplus \mathbb{Z}_4 = \{(\kappa, \mu) | \kappa \in \mathbb{Z} \text{ and } \mu \in \mathbb{Z}_4\}$ be an external direct sum of \mathbb{Z} and \mathbb{Z}_4 with standard addition and multiplication. Since $N(S) = \{(0,0), (0,2)\}$. Firstly, $l_S(r_S((0,0))) = \{(0,0)\} = S(0,0)$. Secondly, $r_S((0,2)) = \{(\kappa,\mu) | (0,2)(\kappa,\mu) = (0,0), \kappa \in \mathbb{Z} \text{ and } \mu \in \mathbb{Z}_4\} = \{(\kappa,\mu)|, \kappa \in \mathbb{Z} \text{ and } \mu \in r_{\mathbb{Z}_4}(2)\}$. Then, $l_S(r_S((0,2))) = \{(0,\beta)|\beta \in \langle 2\rangle_4\} = S(0,2)$. Thus, S is right nil-injective ring. But, S is not right p-injective ring because $(3,0) \in S$. Then, $r_S((3,0)) = \{(0,\mu)|\mu \in \mathbb{Z}_4\}$. So, $l_S(r_S((3,0))) = \{(\kappa,0)|\kappa \in \mathbb{Z}\}$, but $S(3,0) = \{(3\kappa,0)|\kappa \in \mathbb{Z}\}$. Thus, $l_S(r_S((3,0))) \neq S(3,0)$. Hence, S is not right p-injective ring.

Proposition 2.3 If $S = R \propto M = \mathbb{Z} \propto \mathbb{Z}_n$. Then, S_S is right nil-injective ring.

Proof. Let
$$S = \mathbb{Z} \propto \mathbb{Z}_n = \{(\kappa, \bar{\mu}) | \kappa \in \mathbb{Z} \text{ and } \bar{\mu} \in \mathbb{Z}_n \}$$
. Then, $N(S) = \{(0, \bar{\mu}) | \bar{\mu} \in \mathbb{Z}_n \}$. So,
$$r_S \big((0, \bar{\mu}) \big) = \{(0, \bar{\mu})(x, \bar{y}) = (0, \bar{0}) | x \in \mathbb{Z} \text{ and } \bar{y} \in \mathbb{Z}_n \} = \{(x, \bar{y}) | \bar{\mu}x = \bar{0}, x \in \mathbb{Z} \text{ and } \bar{\mu} \in \mathbb{Z}_n \}$$
$$= \{(mp, \bar{y}) \in S | \text{ where } n = p\mu, \text{ for all } m \in \mathbb{Z} \text{ and for some } \mu, n, p \in \mathbb{Z} \}.$$

We have two cases for find $l_S(r_S((0, \overline{\mu})))$. Firstly, if $\overline{\mu}$ is non-zero divisor, then $\overline{\mu}$ is unit. There is nothig to prove. Secondly, if $\overline{\mu}$ is zero divisor, $l_S(r_S((0, \overline{\mu}))) = \{(a, \overline{b}) | (a, \overline{b}) (mp, \overline{y}) = (0, \overline{0}) | \text{where } n = p\mu, \text{ for all } (mp, \overline{y}) \in S, \text{ for all } m \in \mathbb{Z} \text{ and for some } \mu, n, p \in \mathbb{Z}\} = \{(a, \overline{b}) | (amp, \overline{b}mp + a\overline{y}) = (0, \overline{0}) | \text{ for all } (mp, \overline{y}) \in S\} = \{(0, t\overline{\mu}) | \text{ for all } t \in \mathbb{Z}\}. \text{ So, } S(0, \overline{\mu}) = \{(x, \overline{y})(0, \overline{\mu}) | \text{ for all } (x, \overline{y}) \in S\} = \{(0, x\overline{\mu}) | \text{ for all } x \in \mathbb{Z}\}. \text{ Therefore, } l_S(r_S((0, \overline{\mu}))) = S(0, \overline{\mu}), \text{ for all } \overline{\mu} \in \mathbb{Z}_n. \text{ Thus, } S \text{ is right nil-injective ring.}$

Proposition 2.4 Let $S = \mathbb{Z} \oplus \mathbb{Z}_n$ and \mathbb{Z}_n has non-zero nilpotent element. Then, S is right nilinjective if $r_{\mathbb{Z}_n}(\bar{p}) = \bar{p}\mathbb{Z}_n$, for each $\bar{p} \in N(\mathbb{Z}_n)$.

Proof. Suppose that $S = \mathbb{Z} \oplus \mathbb{Z}_n = \{(a, \bar{b}) | a \in \mathbb{Z} \text{ and } \bar{b} \in \mathbb{Z}_n\}$ is a ring with addition defined and multiplication defined by $(a, \bar{b})(c, \bar{d}) = (ac, \bar{b}\bar{d})$. It is clear that $N(S) = \{(0, \bar{p}) | \bar{p} \in N(\mathbb{Z}_n)\}$. We obtain that, $r_S((0, \bar{p})) = \{(x, \bar{y}) | \bar{p}\bar{y} = 0, x \in \mathbb{Z} \text{ and } \bar{y} \in \mathbb{Z}_n\} = \{(x, \bar{y}) | x \in \mathbb{Z} \text{ and } \bar{y} \in r_{\mathbb{Z}_n}(\bar{p})\}$. Since $r_{\mathbb{Z}_n}(\bar{p}) = \bar{p}\mathbb{Z}_n$, then $l_S(r_S((0, \bar{p}))) = \{(\alpha, \bar{\beta}) | (\alpha, \bar{\beta})(x, \bar{y}) = (0, \bar{0}), \text{ for all } x \in \mathbb{Z} \text{ and } \bar{y} \in r_{\mathbb{Z}_n}(\bar{p})\} = \{(0, \bar{\beta}) | \bar{\beta} \in \bar{p}\mathbb{Z}_n\}$. So, $S(0, \bar{p}) = \{(x, \bar{y})(0, \bar{p}) | \text{ for all } (x, \bar{y}) \in S\} = \{(0, \bar{y}\bar{p}) | \text{ for all } \bar{y} \in \mathbb{Z}_n\} = \{(0, \bar{\beta}) | \bar{\beta} \in \bar{p}\mathbb{Z}_n\}$. Therefore, $l_S(r_S((0, \bar{p}))) = S(0, \bar{p})$ for each non-zero nilpotent element $\bar{p} \in N(\mathbb{Z}_n)$. Hence, S is right nil-injective ring.

Proposition 2.5 Let R be a local right nil-injective ring. Then for any non-zero (two-sided) ideals κR and νR of R, $\kappa R \cap \nu R \neq 0$, for any $\kappa, \nu \in N(R)$.

Proof. Suppose that $\kappa R \cap \nu R = 0$ and define the map $f: (\kappa + \nu)R \to R$ by $f[(\kappa + \nu)\chi] = \nu \chi$ for $k \in R$. Let $(\kappa + \nu)\chi = (\kappa + \nu)\chi'$ for $\chi, \chi' \in R$. So $\kappa(\chi - \chi') = \nu(\chi' - \chi) = 0$, yielding $\nu \chi' = \nu \chi$. Thus, f is well-defined. Since R is right nil-injective, then f can be extended on R. Therefore, $f[(\kappa + \nu)] = (\kappa + \nu)\omega$, for some $\omega \in R$. Thus, $b = (\kappa + \nu)\omega$. Since R local, then by [Proposition 7.2.11.,[6]] either ω or $1 - \omega$ is a unit, but $0 = \kappa \omega = \nu(1 - \omega) \in \kappa R \cap \nu R = \{0\}$. Thus, $\kappa = 0$ or $\nu = 0$, a contradiction. Hence, $\kappa R \cap \nu R \neq 0$, for any $\kappa, \nu \in N(R)$.

Proposition 2.6 Let R_R be a right nil-injective ring. Let $\kappa, \nu \in N(R)$:

- (1) If $\kappa R \cong \nu R$ and an idempotent ϱ generates νR . Then there exists an idempotent $\vartheta \in R$ such that $\kappa = R\vartheta$, $r_R(\vartheta) = r_R(\kappa)$ and $R\kappa$ is a direct summand of R.
- (2) If κR and νR are generated by two idempotent elements with $\kappa R \cap \nu R = 0$, then there exists an idempotent δ such that $\kappa R \oplus \nu R = \delta R$.

Proof. (1) Suppose that $vR = \varrho R$, for some $\varrho^2 = \varrho \in R$ and $\kappa R \cong vR$, we define $\sigma: \kappa R \to vR$ is an isomorphism, then $\sigma(\kappa) = vd$, for some $d \in R$ and $\sigma(\kappa c) = \varrho$, for some $c \in R$. Now, $vdc = \sigma(\kappa)c = \sigma(\kappa c) = \varrho$. Since $vR = \varrho R$, $vd = \varrho k$, for some $k \in R$. So, $\vartheta^2 = (cvd)(cvd) = c\varrho vd = c\varrho k = cvd = \vartheta$. Thus, ϑ is an idempotent. So, $\kappa f = \kappa cvd = \sigma^{-1}(\varrho)bvd = \sigma^{-1}(\varrho bvd) = \sigma^{-1}(\varrho k) = \sigma^{-1}(\varrho k) = \sigma^{-1}(vd) = \kappa$. Let $x \in r_R(\vartheta)$, then $\kappa x = \kappa \vartheta x = 0$, so $r_R(\vartheta) \subseteq r_R(\kappa)$. But, as R is a right nil-injective. Then, ϑ is an idempotent and $R\kappa \subseteq R\vartheta$. Now, let $x \in r_R(\kappa)$, then $\vartheta x = cvdx = c\sigma(\kappa)x = c\sigma(\kappa x) = \sigma(0)c = 0$, so $r_R(\kappa) \subseteq r_R(\vartheta)$. But, as R is a right nil-injective, then $Rf \subseteq R\kappa$. Therefore, Ra = Rf and $r_R(\kappa) = r_R(\vartheta)$. This gives $\vartheta = p\kappa$, for some $p \in R$. Since $\kappa = \kappa \vartheta$, we get $\kappa = \kappa p\kappa$ and so $R\kappa = R\vartheta = Rp\kappa = Rt$, where $t = p\kappa$ and $t^2 = (p\kappa)^2 = p\kappa p\kappa = p\kappa = t \in R$. Now, κR is a direct summand of R. We have to prove that $R = Rt \oplus R(1-t) = R\kappa \oplus R(1-t)$. Let $x \in Rt \cap R(1-t)$. Then, $x = rt \in tR$ and $x \in Rt \cap R(1-t)$. Then, $x = rt \in tR$ and $x \in Rt \cap R(1-t)$. Then, $x = rt \in tR$ and $x \in Rt \cap R(1-t)$. Then, $x = rt \in tR$ and $x \in Rt \cap R(1-t)$. Then, $x = rt \in tR$ and $x \in Rt \cap R(1-t)$. Then, $x = rt \in tR$ and $x \in Rt \cap R(1-t)$. Then, $x \in Rt \cap R(1-t)$. Then, $x \in Rt \cap R(1-t)$.

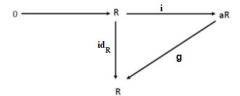
(2) Suppose that $aR = \varrho R$ and $bR = (1 - \varrho)R$, for some idempotents ϱ and $(1 - \varrho)$ of R. Then, $\kappa R \oplus \nu R = \varrho R \oplus \nu R = \varrho R \oplus (1 - \varrho)R$ [as $\varrho, b \in (\varrho R \oplus (1 - \varrho)R)$ and $\varrho, (1 - \varrho) \in (aR \oplus bR)$]. Now, $\varrho R \oplus \nu R = \varrho R \oplus (1 - \varrho)R$ implies $\nu R \cong (1 - \varrho)R$. So, by (1), $(1 - \varrho)R = gR$, $g^2 = (1 - \varrho)^2 = 1 - 2\varrho + \varrho^2 = 1 - 2\varrho + \varrho = 1 - \varrho = g \in R$ and $\varrho g = \varrho(1 - \varrho) = 0$. Therefore, $\kappa R \oplus \nu R = \varrho R \oplus \nu R = \varrho R \oplus gR = (\varrho + g - \varrho g)R$ (since $\varrho + g - \varrho g = 1 \cdot \varrho + (1 - \varrho)g \in (R\varrho \oplus Rg)$ and $\varrho = \varrho(\varrho + g - \varrho g) = \varrho + eg - eg \in R(\varrho + g - \varrho g)$. Therefore, $g = g(\varrho + g - \varrho g) = g\varrho + g - g\varrho g \in R(\varrho + g - \varrho g)$. Thus, $R\kappa \oplus R\nu = Rh$, where $h^2 = (\varrho + g - \varrho g)(\varrho + g - \varrho g) = (\varrho + g - \varrho g) = h \in R$. Hence, $R\varrho \oplus R\nu$ is a direct summand of R.

Theorem 2.7. Let R be a right Wnil- injective ring. If bR embeds in aR, where $r_R(b) = 0$, then there exists a positive integer number n such that b^nR is an image of aR.

Proof. If $\sigma: bR \to aR$ is monic. Since R is a right Wnil-injective, there exists a positive integer n such that any right R-homomorphism of b^nR into R extends to one of R into R. Let right R-homomorphism $f = \iota \sigma i : b^nR \to R$, where $i: b^nR \to bR$ and $\iota: aR \to R$ are embedation maps. Hence $\sigma(b^n) = b^nv = ua$, where $v, u \in R$. Now let $\varphi: aR \to b^nR$, via: $\varphi(ar) = uar = b^nvr$. Since $b^nv \in N(R)$, there exists a positive integer m such that $(b^nv)^mR = r_R(l_R((b^nv)^m))$. Since $l_R((b^nv)^m) = l_R(b^nv) = l_R(b^n) = l_R(b) = 0$, $(b^nv)^mR = r_R(l_R((b^nv)^m)) = R$. Let $b^n = (b^nv)^mc$, where $c \in R$. Hence $\varphi(a(b^nv)^{m-1}c) = ua(b^nv)^{m-1}c = (b^nv)^mc = b^n$ and so φ is an epic.

Proposition 2.8. If R_R is a nil-injective ring, then aR is a direct summand of R, for all $a \in N(R)$.

Proof. Let R_R be a nil-injective ring and consider the row exact diagram of R-modules,



Let id_R is the identity mapping on R and i is the canonical injection. If $g: aR \to R$ completes the diagram commutatively, then $gi = id_R$. Hence, g is a splitting map for i. If $v \in R$, then $g(v) \in R$, so $i(g(v)) \in aR$. If $\kappa = v - i(g(x))$, since $gi = id_R$. Then, $g(\kappa) = g(v) - g(i(g(v))) = 0$ Thus, $\kappa \in Kerg$ and $v = i(g(v)) + \kappa \in Imi + Kerg$. Therefore, R = Imi + Kerg. If $\lambda \in Imi \cap Kerg$, then $\lambda = i(x)$ for some $v \in R$, so 0 = g(y) = g(i(v)) = v. Hence, $\lambda = 0$ and we have $R = Imi \oplus Kerg$. Since Imi = aR, then $R = aR \oplus Kerg$. Hence, aR is direct sum and of R.

Definition 2.9. A given R is a ring if it satisfies the following two conditions:

- (1) For any right ideal χ , there is an idempotent ϱ such that ϱR is an essential extension of χ .
- (2) If δR , $\delta = \delta^2$, is isomorphic to a right ideal Γ , then Γ also is generated by an idempotent.

A ring *R* is right continuous [12] if it satisfies Conditions 1 and 2.

Lemma 2.10. [Lemma 4.1, [12]] If R is a right continuous ring, then $Z(R_R) = J(R)$, and R/J(R) is regular.

Lemma 2.11. [Lemma 2.1,[11]] If $Z(R_R)$ contains no non-zero nilpotent element, then $Z(R_R)=0$.

The following results are about the relation between right nil-injective ring and right continuous rings:

Proposition 2.12. Let R be a ring such that R is right continuous ring and $R_{R/J(R)}$ is nil injective ring. Then R is semiprimitive.

Proof. By Lemma 2.10, $J(R) = Z(R_R)$. We shall show that $J(R) = Z(R_R) = 0$. If not, by Lemma 2.11, there exists $0 \neq \kappa \in N(R)$ then $\kappa \in J(R)$. Since R a right continuous ring, then by Lemma 2.10, R/J(R) is nil-injective, any R-homomorphism of κR into R/J(R) extends to one of R into R/J(R). Let $f: \kappa R \to R/J(R)$ such that $f(\kappa r) = r + J(R)$ where $r \in R$, we have to show that f is well defined, let $\kappa x = \kappa y$, where $\alpha, \beta \in R$ then $\kappa(\alpha - \beta) = 0$. Thus, $(\alpha - \beta) + J(R) = J(R)$, $\alpha + J(R) = \beta + J(R)$, $f(x) = \alpha + J(R) = \beta + J(R) = f(\beta)$, so f is well defined right R-homomorphism, since R/J(R) is nil-injective, there exists such that $1 + J(R) = f(\kappa) = (\nu + J(R))(\kappa + J(R)) = \nu \kappa + J(R)$, then $1 + J(R) = \nu \kappa + J(R)$. So $1 - \nu \kappa \in J(R)$. Since $\kappa \in J(R)$, then $1 - \nu \kappa$ is invertible. We get that $1 \in J(R)$, which is a contradiction. Therefore, $\kappa \notin J(R)$. So, J(R) = 0. This shows that R is semiprimitive.

We construct a relation between right Wnil-injective and right nil-injective in the matrix ring as follow:

Lemma 2.13. [Theorem2.3, [8]] A given ring R is right Wnil-injective if and only if for any $0 \neq a \in N(R)$, there exists a positive integer n such that $\kappa^n \neq 0$ and $l_R(r_R(\kappa^n)) = R\kappa^n$.

Theorem 2.14. Let R be a ring and $S = M_n(R)$ be the matrix ring. Let $\kappa E_{n1} =$

 $(1)\ l_S(r_S(\kappa E_{n1})) = S\kappa E_{n1} \ \text{if and only if} \ l_R(r_R(\kappa)) = R\kappa.$

(2) If $M_n(R)$ is a right Wnil-injective ring, for some $n \ge 2$, then R is a right nil-injective ring.

Proof. 1. Let $b \in l_R(r_R(\kappa))$ then $r_R(\kappa) \subseteq r_R(\nu)$. Now, take $(\omega_{ij}) \in r_S(\kappa E_{n1})$, then

so we have $\kappa \omega_{1i} = 0$, for all i = 1, 2, ..., n. That is, $\omega_{1i} \in r_R(\kappa) \subseteq r_R(\nu)$ so $\nu \omega_{1i} = 0$, for i = 1, 2, ..., n, yielding $(\nu E_{n1})(\omega_{1i}) = 0$. Thus, $(\omega_{ij}) \in r_S(\nu E_{n1})$, hence $r_S(E_{n1}\kappa) \subseteq r_S(E_{n1}\nu)$. Therefore, $\nu E_{n1} \in l_S(r_S(\kappa E_{n1}) = S(\kappa E_{n1})$. So, we can write $\nu E_{n1} = (d_{ij})\kappa E_{n1}$, where $(d_{ij}) \in S$, which implies $\nu = d_{nn}\kappa \in R\kappa$. Hence, $l_R(r_R(\kappa)) = R\kappa$. Conversely, Let $B = (bij) \in l_S(r_S(\kappa E_{n1}))$ then $r_R(\kappa E_{n1}) \subseteq r_R(B)$. Now, if $i \neq 1$, then $(\kappa E_{n1})E_{ij} = 0$ which implies $E_{ij} \in r_S(\kappa E_{n1}) \subseteq r_S(B)$ thus $BE_{ij} = 0$ that is $(\nu_{ij})(E_{ij}) = 0$ hence $\nu_{ki} = 0$ for k = 1, 2, ..., n. So, k = 1, 2, ..., n. So, k = 1, 2, ..., n. So, k = 1, 2, ..., n.

for i=1,2,...,n. Thus, $r_R(\kappa) \subseteq r_R(\nu_{i1})$ implies $l_R(r_R(\nu_{i1})) \subseteq l_R(r_R(\kappa))$ then $\nu_{i1} \in l_R(r_R(\nu_{i1})) \subseteq l_R(r_R(\kappa)) = R\kappa$. So, $\nu_{i1} = t_{i1}\kappa$ with $t_{i1} \in R$ for i=1,...,n. Thus B=

 $l_S(r_S(\kappa E_{n1})) = S(\kappa E_{n1}).$

(2) Let $0 \neq \kappa \in N(R)$ and take, $u = \kappa E_{n1}$. Now, $M_n(R)$ is right Wnil-injective. So, by **Lemma 2.13.** there exists m > 1 such that $u^m \neq 0$ and $l_S(r_S(u)) = Su^m$. Since $n \geq 2$, $u^2 =$

 $l_S(r_S(u)) = Su$. Thus *R* is right nil-injective.

A non-zero right R-module M is said to be s-unital [4], if $u \in uR$ for each $u \in M$. If R_R is s-unital, then R is called a right s-unital ring. If M is a right R-module and S is a subset of R, then we set $l_M(S) = \{u \in M | uS = 0\}$. HIRANO and TOMINAGA introduced in [13], if M is a right R-module and S is a subset of R, then $r_M(S) = \{u \in M | Su = 0\}$. So, if M is a right R-module and α is an element of R, then $r_M(\alpha) = \{u \in M | \alpha u = 0\}$. Finally, if M is a right R-module and α is an element of R, then $l_M(\alpha) = \{u \in M | u\alpha = 0\}$.

Theorem 2.15. [Theorem1, [4]] If F is a finite subset of a right s-unital ring R, then there exists an element $e \in R$ such that $\alpha e = \alpha$, for all $\alpha \in F$.

An *R*-module *M* is called right nil-injective module if each $a \in N(R)$ and each homomorphism $f: aR \to M$, there exists a homomorphism $g: R \to M$ such that f(x) = g(x), for every $x \in \kappa R$ [2].

Theorem 2.16 Let M be s-unital module, then the following conditions are equivalent:

- (1) M_R is a right nil-injective module.
- (2) $l_M(r_R(\alpha)) = M\alpha$ for every $\alpha \in N(R)$.
- (3) $r_R(\alpha) \subseteq r_R(\beta)$ where $\alpha, \beta \in N(R)$, then $\beta M \subseteq \alpha M$.
- (4) If $f: \alpha R \to R$, $\alpha \in N(R)$, is R-linear, then $f(\alpha) \in M\alpha$.

Proof. (1) \Rightarrow (2) Assume that M_R is nil-injective. Given $u \in l_M(r_R(\alpha))$ such that $\alpha \in N(R)$ there exist an element $e' \in R$ such that ue' = u. Then, by **Theorem 2.15.**, there exists an element $e \in R$ such that $\alpha e = \alpha$ and e'e = e'. Consider $f: \alpha R \to M$ defined by $f(\alpha x) = ux$. Since M is a nil-injective, we can find an element $v \in M$ with $ux = v\alpha x$, for all $x \in R$. We therefore obtain $u = v\alpha x$.

 $ue' = ue = v\alpha e = v\alpha$, which means $l_M(r_R(\alpha)) \subseteq M\alpha$. On the other hand, let $v\alpha \in M\alpha$, for some $v \subseteq M$. Then, $v\alpha x = 0$, for every $x \in r_R(\alpha)$. Thus, $v\alpha \in l_M(r_R(\alpha))$. So that $l_M(r_R(\alpha)) = M\alpha$.

- (2) \Rightarrow (3) Let $S_1 \subseteq S_2$. Then $l_M(S_2) = \{u \in M \mid uS_2 = 0\} \subseteq \{u \in M \mid uS_1 = 0 = l_M(S_2)\}$. Suppose $\alpha, \beta \in N(R)$ such that $r_R(\alpha) \subseteq r_R(\beta)$. Then, $l_M(r_R(\beta)) \subseteq l_M(r_R(\alpha))$. Therefore, $Mb = l_M(r_R(\alpha)) \subseteq l_M(r_R(\alpha)) = M\alpha$.
- $(3) \Rightarrow (4) \text{ First, } l_R(\beta) + R\alpha \subseteq l_R(\beta R \cap r_R(\alpha)) \text{ as } x \in l_R(\beta) + R\alpha \text{ implies that } x = y + k\alpha \text{ where } y\beta = 0. \text{ Now, we must show } x \in l_R[\beta R \cap r_R(\alpha)] \text{ . Then, } x(\beta R \cap r_R(\alpha)) = 0. \text{ Therefore, } (y + k\alpha)(\beta R \cap r_R(\alpha)) = 0. \text{ We have, } (y + k\alpha)(\beta R \cap r_R(\alpha)) = \{(y + k\alpha)\beta bt | \alpha\beta t = 0, t \in R\} = \{y\beta t | t \in R = \{0\}\} \text{. Let } t = 1, \text{ then } y\beta t = y\beta = 0. \text{ Thus, } y \in l_R(\beta) \text{. Therefore } l_R(\beta) + R\alpha \subseteq l_R\beta R \cap r_R(\alpha)). \text{ Now, let } x \in l_R(\beta R \cap r_R(\alpha)), \text{ then } x(\beta R \cap r_R(\alpha)) = 0. \text{ This means that } \{x\beta t | \alpha\beta t = 0, t \in R = 0\}. \text{ So, whenever } t \in l_R(\alpha\beta), t \in l_R(x\beta) \text{ showing that } r_R(\alpha\beta) \subseteq r_R(x\beta) \text{ and so } Rx\beta \subseteq R\alpha\beta(by(3)). \text{ This implies that } xb = p\alpha\beta \text{ for some } p \in R \text{ yielding } x p\alpha \in l_R(\beta) \text{ that is } x \in l_R(\beta) + R\alpha. \text{ Thus, } l_R(\beta R \cap r_R(\alpha)) \subseteq (l_R(\beta) + R\alpha) \text{. Hence, } l_R(\beta R \cap r_R(\alpha)) = l_R(\beta) + R\alpha \text{.}$
- (4) \Rightarrow (1) Let $f: \alpha R \to M$ be R-linear map with $f(\alpha) \in M\alpha$. Then, $f(\alpha) = c\alpha$, for some $c \in M$. This proves (1). Which completes the proof.

3. Conclusions

In conclusion, our study has demonstrated examples of rings that are nil-injective but not p-injective. We also attempted to find examples of rings that are Wnil-injective but not nil-injective. These examples highlight the importance of studying these generalizations, as they different from the previous types of nil-injective rings.

References

- [1] Bland, Paul E. Rings and their modules. Walter de Gruyter, 2011. https://doi.org/10.1515/9783110250237.
- [2] F.A Ahmed, A.M Abdul-Jabbar, On characterizations and properties of nil-injective rings and modules, AIP Conf. Proc., 2554 (2023)020012-1-020012-8),

https://doi.org/10.1063/5.0104696.

- [3] F.A Ahmed, A.M Abdul-Jabbar, On np-injective rings and Modules, Int. J Membr. Sci. Techno.,10i3(2023)3149-3159, https://doi.org/10.15379/ijmst.v10i3.3110.
- [4] H. Tominaga, On s-unital rings, Mathematical Journal of Okayama University, 18(1976) 117-134.
- [5] J. Chen, Y. Zhou, Morphic rings as trivial extensions, Glasgow Math. J., 47(1)(2015)139-148, https://doi.org/10.1017/S0017089504002125.
- [6] J. C Wei, J. H Chen, nil-injective rings, Int. Elec. J Algebra, 2(2007)1-21,
- [7] J. C Wei, J. H Chen, Weakly np-Injective Rings and Weakly C2 Rings, Kyungpook Math. J,51(2011) 93-108
- [8]R. D Mahmood, H. Q Mohammad, Wnil-Injective modules, Raf. J. of Comp. & Math's. 7.1 (2010): 135-143, doi:10.33899/csmj.2010.163852.
- [9] R. Chi Ming, On (von Neumann) regular rings, Proc. Edinburgh Math. Soc. 19(1974)89-91, https://doi.org/10.1017/S0013091500015418.
- [10] R. Chi Ming, On quasi-Frobeniusean and Artinian rings, Publications De L, Institute Mathematique,33(1983)39-45, http://eudml.org/doc/257655.
- [11] R. Chi Ming, On von Neumann regular rings, III. Monatshefte für Mathematik, 86, (1978) 251-257, https://doi.org/10.1007/BF01659723.
- [12] Y Utumi, On continuous rings and self injective rings, Trans, Am. Math. Soc, 118(1965) 158-173, https://doi.org/10.1090/s0002-9947-1965-0174592-8.
- [13] Y. Hirano, H. Tominaga, Regular rings, V-rings and their generalizations, Hiroshima Math. J., 9(1979) 137-149, https://doi.org/10.32917/hmj/1206135200.

على بعض النتائج لحلقات من النمط nil

فرمان على احمد و عبدالله محمد عبدالجبار

قسم الرياضيات, كلية العلوم, جامعة صلاح الدين-أربيل, أقليم كور دستان-العراق.

المستخلص

يقال للمقاس الأيمن M انه غامر من النمط nil إذا كان لكل $\omega \in N(R)$ وان أي هومومورفيزم $m \in R$ الى توسعته يمكن m الله يقال للمقاس الأيمن m انه غامر من النمط m إذا كان m إذا كان لكل m إذا كان لكل m m m إذا كان لكل m m m إذا كان لكل m m إنه غامر من النمط m إذا كان لكل m m إنه غامر من النمط m إذا كان m غامر من النمط m ألى توسعته يمكن m m ألى توسعته يمكن m ألى توسعته يمكن m ألى تقش بعض الخصائص والتوصيفات المتعلقة بهذه الحلقات في هذا العمل.