

The generalized 3-connectivity of equally complete k-partite graph and **its line graph**

Dheyaa D. Kadhim Alaa A. Najim

Department of Mathematics, College of Science, University of Basrah

Doi 10.29072/basjs.20190307 , Article inf., Received: 4/11/2019 Accepted: 21/12/2019 Published: 31/12/2019

Abstract.

For a vertex set S with cardinality at least 2 in a graph G, we need a tree in order to connected the set, where this tree is usually called a Steiner tree connecting S (or an S – tree). Two Steiner trees *T* and *T'* are said to be internally disjoint if $V(T) \cap V(T') = S$ and $E(T) \cap V(T') = S$ $E(T') = \phi$. Let $\kappa_G(S)$ denote the maximum number of internally disjoint Steiner trees connecting *S* in *G*. The generalized *k*-connectivity $\kappa_k(G)$ of a graph *G* which was introduced by Chating *S* in *G*. The generalized *k*-connectivity $\kappa_k(G)$ of a graph *G* which was introduced by Charand et al. (1984) and defined as: $\kappa_k(G) = \min{\{\kappa_G(S) : S \subseteq V(G) \text{ and } |S| = k\}}$. In this paper we determine the generalized 3-connectivity of equally complete k -partite graph and its line graphs.

Keywords : The generalized 3- connectivity, internally disjoint trees, Steiner trees, the line graph, the complete *k*-partite graph.

1. Introduction.

The graphs in this paper are simple and undirected. For a graph G , the set of vertices, the set of edges, and the line graph of G are denoted by $V(G)$, $E(G)$, and $L(G)$ respectively. The generalized connectivity of a graph *G* which introduced by Chartrand et al. in[1], is a natural and nice generalization of the vertex connectivity.

The connectivity of the graph G is defined as $\kappa(G) = \min{\{\kappa_G(S) : S \subseteq V, |S| = 2\}}$, where $\kappa_G(S)$ is the maximum number of internally disjoint paths from *u* to *v* in *G* (*S* = {*u*,*v*}) [2,3]. The subgraph $T = (V', E')$ of the graph $G = (V, E)$ is called Steiner tree connecting S (S-tree) if T is a tree and the set $S \subseteq V$ of at least two vertices. Two Steiner trees T and T' connecting *S* are said to be internally disjoint if $E(T) \cap E(T') = \phi$ and $V(T) \cap V(T') = S$. For an integer *k* with $2 \le k \le |V(G)|$ and $S \subseteq V(G)$ with $|S| \ge 2$, the generalized k-connectivity is define as: with $2 \le k \le |V(G)|$ and $S \subseteq V(G)$ with $|S| \ge 2$, the generalized k-connectivity is define as:
 $\kappa_k(G) = \min{\{\kappa_G(S) : S \subseteq V(G), |S| = k\}}$, where $\kappa_G(S)$ is maximum number of internally disjoint Steiner trees connecting *S* in *G*. Clearly $\kappa_2(G) = \kappa(G)$. In [4] Li, Shasha, Wei Li, and Xueliang Li, determined the generalized connectivity of complete bipartite graphs. Later, they dicussed the generalized connectivity of the complete equipartition 3-partite graphs in [5], the generalized 3-connectivity of graph products [3], also see[2,6,7,8,9].

Let $K_k(n)$ be an equally complete k-partite graph with partition $\{X_1, X_2, ..., X_k\}$ where $\big|X_i\big|$ Let $K_k(n)$ be an equally complete *k*-partite graph with partitio
= *n*, *i* = 1,2,...,*k*, and let $H_{ij} = G[X_{ij}]$, *i* = 1,2,...,*k*, *j* = 1,2,...,*n* be an induced subgraph of $a = n, i = 1, 2, ..., k$, and let $H_{ij} = G[X_{ij}], i = 1, 2, ..., k, j = 1, 2, ..., n$ be an induced subgraph of G by the set $X_{ij} = \{x_{rs} \in X_r : r = 1, 2, ..., k, s = 1, 2, ..., n, r \neq i\} \cup \{x_{ij}\}\$, see figure (1(*a*)). The line graph $L(K_k(n))$ of the equally complete k-partite graph is a graph that $V(L(K_k(n)))$ $E(K_k(n))$ on the equality complete k plants graph is a graph that $V(E(K_k(n)) = E(K_k(n))$ and two vertices $u = u_1 u_2$, $v = v_1 v_2 \in V(L(K_k(n)))$ are adjacent if either $(u_1 = v_1)$ and $u_2v_2 \in E(K_k(n))$ or $(u_2 = v_2$ and $u_1v_1 \in E(K_k(u))$. The line graph $L(H_{ij})$ of the star graph H_{ij}
is complete graph of order $(k-1)n+1$ with $V(L(H_{ij})) = \{x_{ij}x_{rs} : r = 1, 2, ..., k, s = 1, 2, ..., n, r \neq i\}$ is complete graph of order $(k-1)n + 1$ with see figure $(1(b))$.

2. Preliminary results

Proposition 2.1 [10] Two simple graphs G and H are isomorphic if and only if there is a bijective mapping. $\theta: V(G) \to V(H)$ such that $uv \in E(G)$ if and only if $\theta(u)\theta(v) \in E(G)$.

Proposition 2.2 [9] Let G be a connected graph of order u with minimum degree δ . If there are two adjacent vertices of degree δ , then $\kappa_k(G) \leq \delta - 1$ for $3 \leq k \leq n$. Moreover, the upper bound is sharp.

3. Main results

 In this section, we determine the value of the generalized 3-connectivity of the equally complete *k* -partite graph and its line graph. First we introduce two lemmas that are important to the main results.

Lemma 3.1 For any two positive integers k and n , $\frac{1}{j}$ $\left(\frac{1}{j-1}\right)$ $(n) \equiv \left(\int_0^k \left(\int_0^n H_{i,j} \right) \right)$ $\mu_k(n) \, \widetilde{=} \bigcup | \bigcup H_{ij}$ $\sum_{i=1}$ $\binom{1}{i}$ $K_k(n) \cong \bigcup_{k=1}^{n} \left[\bigcup_{k=1}^{n} H \right]$ $=1$ $\sum_{j=1}$ $\begin{pmatrix} n \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \end{pmatrix}$ $\cong \bigcup_{i=1}^{\infty} \bigg(\bigcup_{j=1}^{n} H_{i,j}\bigg).$

Proof: Let
$$
G = K_k(n)
$$
 and $H = \bigcup_{i=1}^k (\bigcup_{j=1}^n (H_{ij}))$. $|V(G)| = kn, |V(H)| = \frac{1}{1 + n(k-1)} \sum_{i=1}^k \sum_{j=1}^n |V(H_{ij})|$
\n
$$
= \frac{1}{1 + n(k-1)} \sum_{i=1}^k \sum_{j=1}^n (1 + n(k-1)) = nk, \text{ then } |V(G)| = |V(H)|. \quad |E(G)| = \frac{1}{2}k(k-1)n^2, \quad |E(H)| = \sum_{i=1}^k \sum_{j=1}^n |E(H_{ij})| = \sum_{i=1}^k \sum_{j=1}^n \left(\frac{(k-1)n}{2}\right) = \frac{1}{2}k(k-1)n^2, \text{ then } |E(G)| = |E(H)|.
$$

Define $f: V(G) \to V(H)$, as $f(x) = x, \forall x \in V(G)$, then f is bijective mapping. Let $uv \in E(G)$, then there are $i, i' = 1, 2, ..., n, i \neq i'$ such that $u \in X_i, v \in X_i'$, also there are $j, j' = 1, 2, ..., k$ then there are $i, i' = 1, 2, ..., n, i \neq i'$ such that $u \in X_i, v \in X_{i'}$, also there are $j, j' = 1, 2, ..., k$
such that $u = x_{ij} \in X_{ij}$, $v = x_{ij'} \in X_{ij'}$. Clearly, there exist $uv = x_{ij}x_{ij'} \in E(H_{ij}) \cap E(H_{ij'}) \subseteq E(H)$ for some $i, i' = 1, 2, ..., n$ and $j, j' = 1, 2, ..., m$. Since $f(u)f(v) = uv$, then $f(u)f(v) \in E(H)$ from proposition (2.1) .

Lemma 3.2 For any two positive integers k and n , $\frac{1}{j}$ $(K_k(n)) \cong \bigcup^k \left(\bigcup^n L(H_{ij}) \right)$ $_{k}(n)) \cong \bigcup \bigcup L(H_{ij})$ $\sum_{i=1}$ $\binom{1}{i}$ $L(K_k(n)) \cong \bigcup^k \left(\bigcup^n L(H)\right)$ $\bigcup_{j=1}^{\infty}$ $\binom{n}{\prod_{i=1}^{n}r_{i}(n)}$ $\cong \bigcup_{i=1}^k \left(\bigcup_{j=1}^n L(H_{ij}) \right).$

Proof: Let
$$
L(G) = L(K_k(n))
$$
 and $L(H) = \bigcup_{i=1}^k \bigcup_{j=1}^n L(H_{ij})$. $|V(L(G))| = \frac{1}{2}k(k-1)n^2$, $|V(L(H))|$
\n
$$
\sum_{i=1}^k \sum_{j=1}^n |V(L(H_{ij}))| = \sum_{i=1}^k \sum_{j=1}^n \left(\frac{(k-1)n}{2}\right) = \frac{1}{2}k(k-1)n^2
$$
, then $|V(L(G))| = |V(L(H))|$. $|E(L(G))| = \frac{1}{2}$
\n
$$
\sum_{i=1}^k \sum_{j=1}^n (d_G(x_{ij}))^2 - E(G(x_{ij})) = \frac{1}{2}k(k-1)^2n^3 - \frac{1}{2}k(k-1)n^2 = \frac{1}{2}k(k-1)n^2((k-1)n-1),
$$

\n $|E(L(H))| = \sum_{i=1}^k \sum_{j=1}^n |E(L(X_{ij})| = \sum_{i=1}^k \sum_{j=1}^n \left(\frac{(k-1)n((k-1)n-1)}{2}\right) = \frac{1}{2}k(k-1)n^2((k-1)n-1)$, then

$$
|E(L(H))| = \sum_{i=1}^{k} \sum_{j=1}^{n} |E(L(X_{ij}))| = \sum_{i=1}^{k} \sum_{j=1}^{n} \left(\frac{(k-1)n((k-1)n-1)}{2} \right) = \frac{1}{2}k(k-1)n^{2}((k-1)n-1)
$$
, the

$$
|E(L(G))| = |E(L(H))|
$$
, see figure(2).

Figure 2: $L(K_3(3))$

Suppose $a \in V(L(K_k(n))$, this mean a is an edge in $K_k(n)$, thus there are two vertices x_{ij}, x_{ij} in $K_k(n)$, $\forall i \neq i'$ such that $a = x_{ij}x_{ij'}$. Then $a \in E(H_{ij}) \cap E(H_{ij'})$ for some $i, i' = 1, 2, ..., k$ and *j*, *j'* = 1, 2, ..., *n*, *i.e*. $a \in V(L(H_{ij})) \cap V(L(H_{i'j'}))$, thus $a \in V(L(H))$.

Define $f: V(L(G)) \to V(L(H))$, as $f(x) = x, \forall x \in V(L(G))$, then f is bijective mapping. Define $f: V(L(G)) \to V(L(H))$, as $f(x) = x, \forall x \in V(L(G))$, then f is bijective mapping
Let $ab \in E(L(G))$ such that $a = x_{ij}x_{ij'}$, $b = x_{ij}x_{ij'}$, $\forall i, i', i'' = 1, 2, ..., k, i \neq i', i \neq i''$ and j, j', j'' = 1, 2,..., *n*, such that $a \in X_{ij}$, $b \in X_{i'j'}$. Clearly, there exist $ab = x_{ij}x_{i'j'}x_{ij}x_{i'j'} \in E(L(H_{ij}))$ $E(L(H_{ij'})) \subseteq E(L(H))$. Since $f(a)f(b) = ab$, then $f(a)f(b) \in E(L(H))$ from pro. (2.1). \blacksquare

Theorem 3.3 : Let $K_k(n)$ be a complete k-partite graph with two integers $k, n \geq 3$, the **Example 11 SIS :** Let $K_k(n)$ be a complete k -partite graph with two integer
generalized 3-connectivity of $K_k(n)$ is $\left\lfloor \frac{(2k-3)n}{2} \right\rfloor \leq \kappa_3(K_k(n)) \leq n(k-1)-1$. **.**

Proof : Let $G = K_k(n)$ and $\pm 1 \setminus j=1$ *k n i j* $i=1$ j $H = \left| \begin{array}{c} \end{array} \right| \left| \begin{array}{c} \end{array} \right| H$ $=1$ $j=1$ $\begin{pmatrix} n \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix}$ $=\bigcup_{i=1}^{\infty}\left(\bigcup_{j=1}^{n}H_{ij}\right)$, from the lemma (3.1) we have $G \cong H$. Since the degree of any vertex in *H* is $n(k-1)$, then *H* is $n(k-1)$ -regular graph, by the proposition (2.2) we have $\kappa_3(H) \le n(k-1)-1$. For the completing the proof we just need to show that for any 3-subset $S = \{u, v, w\} \subseteq V(G)$, there exist at least $\left| \frac{(2k-3)}{2} \right|$ 2 $(2k-3)n$ $\left[\frac{(2\kappa - 3)n}{2}\right]$ internally disjoint Steiner trees connecting S in *H*. Since $H_{1j} = H_{2j} = ... = H_{ij} = K_{1,(k-1)n}$, $\forall i = 1, 2, ..., k$, $j = 1, 2, ..., n$, H_{1j} $\cong H_{2j} \cong ... \cong H_{ij}$, then we have three cases :

Case 1. If $u, v, w \in H_{i,j}, \forall i = 1, 2, ..., k, j = 1, 2, ..., n$. Without loss of generality, we may put $i = 1$, $j = 1$, such that $u, v, w \in H_{11}$. Then there are three subcases:

Subcase (1.1) Let $u = x_{11}$, $v = x_{21}$, $w = x_{31}$. Then the maximum number of internally disjoint Strees connecting *S* in *H* is $\left(\frac{(2k-3)}{2} \right)$ 2 $\vert (2k-3)n \vert$ $\left[\frac{(2\kappa - 3)n}{2}\right]$, see figure 3.

Subcase (1.2) Let $u = x_{11}$, $v = x_{21}$, $w = x_{22}$. Then the maximum number of internally disjoint S-trees connecting S in H is $(n(k-1)-1)$, see figure 4.

Subcase (1.3) Let $u = x_{21}$, $v = x_{22}$, $w = x_{23}$. Then the maximum number of internally disjoint S-trees connecting S in H is $(n(k-1)-1)$, see figure 5.

Case 2. If $u, v \in H_{ij}$, $w \notin H_{ij}$, $\forall i = 1, 2, ..., k$, $j = 1, 2, ..., n$. Again, we may assume $i = 1, j = 1$ such that $u, v \in H_{11}$ and $w \notin H_{11}$. Then there are two subcases :

Subcase (2.1) Let $u = x_{11}$, $v = x_{21}$, $w = x_{12}$. Then the maximum number of internally disjoint Strees connecting S in H is $(n(k-1)-1)$, see figure 6.

Subcase (2.2) Let $u = x_{21}$, $v = x_{31}$, $w = x_{12}$. Then the maximum number of internally disjoint S-trees connecting *S* in *H* is $\left| \frac{(2k-3)}{2k} \right|$ 2 $\vert (2k-3)n \vert$ $\left[\frac{(2\kappa - 3)h}{2}\right]$, see figure 7.

Case 3. If $u \in H_{i,j}$, $v, w \notin H_{i,j}$, $\forall i = 1, 2, ..., k$, $j = 1, 2, ..., n$. Assume $i = 1, j = 1$ such that $u \in H_{11}$, $v, w \notin H_{11}$. Then there are two subcases:

Subcase (3.1) Let $u = x_{11}$, $v = x_{12}$, $w = x_{13}$. Then the maximum number of internally disjoint S-trees connecting S in H is $(n(k-1))$, see figure 8.

Subcase (3.2) Let $u = x_{21}$, $v = x_{12}$, $w = x_{13}$. Then the maximum number of internally disjoint S-trees connecting S in H is $(n(k-1)-1)$, see figure 9.

For the three cases we get
$$
\left\lfloor \frac{(2k-3)n}{2} \right\rfloor \le \kappa(S) \le (n(k-1))
$$
, then we deduce that $\kappa_3(K_k(n)) \ge \left\lfloor \frac{(2k-3)n}{2} \right\rfloor$. Thus $\left\lfloor \frac{(2k-3)n}{2} \right\rfloor \le \kappa_3(K_k(n)) \le n(k-1)-1$.

Theorem 3.4 : Let $L(K_k(n))$ be the line graph of the complete k – partite graph with $k, n \geq 3$, **Theorem 3.4 :** Let $L(K_k(n))$ be the line graph of the complete k – partite graph with $k, n \ge 3$, then the generalized 3-connectivity of $L(K_k(n))$ is $2((k-1)n-2) \le \kappa_3(L(K_k(n)) \le 2((k-1)n)$ $-2) + 1$.

Proof: Let $R = L(K_k(n))$ and \overline{i} 1 \overline{j} =1 \int_{a}^{k} \int_{a}^{n} $L(H_{ij})$ *i j* $\sum_{i=1}$ $\binom{1}{i}$ $M = \left[\begin{array}{c} x \\ y \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] L(H)$ $=1$ $\sum_{j=1}$ $\begin{pmatrix} n \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \end{pmatrix}$ $=\bigcup_{i=1}^{\infty} \left(\bigcup_{j=1}^{n} L(H_{ij})\right)$, from lemma (3.2) we have $R \cong M$. Since the degree of any vertex in *M* is $((2((k-1)n-2))+2$, then *M* is $(2((k-1)n-2))+2$ -regular graph, by the proposition (2.2) we have $\kappa_3(L(M)) \le 2((k-1)n-2)+1$. For completing the proof we just need to show that for any 3-subset $S = \{u, v, w\} \subseteq V(M)$, there exist $2((k-1)n) -$ 2 internally disjoint Steiner trees connecting *S* in *M*. Since $L(H_{1j}) = L(H_{2j}) = ... = L(H_{ij}) =$
2 internally disjoint Steiner trees connecting *S* in *M*. Since $L(H_{1j}) = L(H_{2j}) = ... = L(H_{ij}) =$ $K_{(k-1)n}$, $\forall i = 1, 2, ..., k, j = 1, 2, ..., n$, $L(H_{1j}) \cong ... \cong L(H_{ij})$, then we have three cases:

Case 1. If $u, v, w \in L(H_{ij}), \forall i = 1, 2, ..., k, j = 1, 2, ..., n$. Without loss of generality we assume $i = 1, j = 1$, such that $u, v, w \in L(H_{11})$. Then there are two subcases:

Subcase 1.1 Let $u = x_{11}x_{21}$, $v = x_{11}x_{22}$, $w = x_{11}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is $(2((k-1)n-2)) + 1$, see figure 10.

Subcase 1.2 Let $u = x_{11}x_{21}$, $v = x_{11}x_{22}$, $w = x_{11}x_{31}$. Then the maximum number of internally disjoint S-trees of connecting S in M is $(2((k-1)n-2)) + 1$, see figure 11.

 $x_{23}x_{rs}$

Case 2. If $u, v \in L(H_{ij}), w \notin L(H_{ij}), \forall i = 1, 2, ..., k, j = 1, 2, ..., n$. Again assume $i = 1, j = 1$, such that $u, v \in L(H_{11}), w \notin L(H_{11})$. Then there are four subcases :

Subcase 2.1 Let $u = x_{11}x_{21}$, $v = x_{11}x_{22}$, $w = x_{12}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is $(2((k-1)n-2)) + 1$, see figure 12.

Subcase 2.2 Let $u = x_{11}x_{21}$, $v = x_{11}x_{22}$, $w = x_{31}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is $(2((k-1)n-2)) + 1$, see figure 13.

Figure 14

Figure 15

Subcase 2.3 Let $u = x_{11}x_{21}$, $v = x_{11}x_{22}$, $w = x_{11}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting $S \text{ in } M$ is $(2((k-1)n-2)) + 1$, see figure 14.

Subcase 2.4 Let $u = x_{11}x_{21}$, $v = x_{11}x_{31}$, $w = x_{22}x_{32}$. Then the maximum number of internally disjoint S-trees of connecting S in M is $(2((k-1)n-2))$, see figure 15.

Case 3. If $u \in L(H_{ij}), v, w \notin L(H_{ij}), \forall i = 1, 2, ..., k, j = 1, 2, ..., n$. Assume $i = 1, j = 1$ such that $u \in L(H_{ij}), v, w \notin L(H_{ij}).$ Then there are two subcases:

Subcase 3.1 Let $u = x_{11}x_{21}$, $v = x_{12}x_{22}$, $w = x_{13}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is $(2((k-1)n-2)) + 1$, see figure 16.

Subcase 3.2 Let $u = x_{11}x_{22}$, $v = x_{21}x_{12}$, $w = x_{31}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is $(2((k-1)n-2))$, see figure 17.

From the cases that we discussed we get $2((k-1)n-2) \le \kappa(S) \le 2((k-1)-2)+1$. Then From the cases that we discussed we get $2((k-1)n-2) \le \kappa(S) \le 2((k-1)-2)+1$. Then $\kappa_3(L(K_k(n)) \ge 2((k-1)n-2)$. Therefore $2((k-1)n-2) \le \kappa_3(L(K_k(n)) \le 2((k-1)n-2)+1$.

References

[1] G. Chartrand, S.F. Kappor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, *Bull. Bombay Math.* Colloq. **2** (1984) 1-6.

[2] Y. Li, R. Gu, and H. Lei, The generalized connectivity of the line graph and the total graph for the complete bipartite graph, *Applied Mathematics Computation* **347** (2019) 645- 652.

[3] H. Li, Y. Ma, W. Yang, and Y. Wang, The generalized 3-connectivity of graph products, *Applied Mathematics and Computation* **295** (2017) 77-83.

[4] S. Li, W. Li, and X. Li, The generalized connectivity of complete bipartite graphs, *Ars Comb.* **104** (2012) 65-79.

[5] S. Li, W. Li, and X. Li, The generalized connectivity of complete equipartition 3-partite graphs, *Bull. Malays. Math. Sci. Soc.* **37** (2014) 103-121.

[6] L. Chen, X. Li, M. Lin, and Y Mao, A solution to a conjecture on the generalized connectivity of graphs, *Joumal of Combinatorial Optimization* **33** (2017) 275-282.

[7] S.-L. Zhao, and R.-X. Hao, The generalized connectivity of alternating graphs and (n,k) star graphs. *Discrete Applied Mathematics* **251** (2018) 310-321.

[8] H. Li, X. Li, and Y. Mao, On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices*. Bull.Malays. Math. Sci. Soc* **37** (2014) 3.

[9] S. Li, X. Li, and W. Zhou, Sharp bounds for the generalized connectivity $\kappa_3(G)$. *Discrete Mathematics* **310** (2010) 2147-2163.

[10] J.-M. Xu, Theory and Application of Graphs. *Kluwer Academic Pulbishers* **10** (2003).

أتصال -3 المعمم للبيان الجزئي -k التام المتساوي ولبيانه الخطي

ضياء داخل كاظم , عالء عامر نجم قسم الرياضيات , كلية العلوم ,جامعة البصرة

المستخلص

G **فإننا بحاجة الى شجرة من اجل توصيل للحصول على مجموعة رؤوس V من اصل 2 على االقل في البيان) يقال عن شجرتين من اشجار** *S* **) او شجرة** *S* **المجموعة, حيث عادة ما تسمى هذه الشجرة بشجرة ستاينر ربط** المجموعه_; حيث عادة ما ت*سمى* هده الشجرة بتنجرة ستاينر ربط *S (او شجرة S) ي*قال عن شجرتين من اشجار
ستاينر مثل *T,T ان*هما منفصلتان داخليا اذا كان *E(T)\N(T') = \$, V(T)\NV(T') = S تشي*ر *G* **للبيان** () *G* **. اتصال k المعمم** *G* **في** *S* **الى الحد االقصى لعدد اشجار ستاينر المنفصلة داخليا والتي تربط والذي تم تقديمه من قبل الباحث Chartrand) 1984 (يعرف بانه** () min{ () : () } **. في هذا البحث حددنا اتصال 3 المعمم للبيان الجزئي k التام** *k G G S S V G and S k* **المتساوي وبيانه الخطي.**