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Abstract 

 In this paper, a cubic B-spline method is applied to solve singularly perturbed differential 

difference equations with delay as well as advances whose solution exhibits boundary player 

behavior.  Error analysis of the submitted method was discussed. We tested the method with 

three numerical examples found the presented method can be applicable and accurate.  
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1. Introduction 

 In this paper, we consider the following singularly perturbed differential-difference 

(SPDDE) [1–8]:  

1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y x a x y x a x y x a x y x a x y x f x          ,                 (1)   

  (0,1)x   and subject to the interval land boundary conditions                                                                                                                            

        
( ) ( ),y x x  on   0x                                                                                            (2) 

        
( ) ( ),y x x  on  1 1x                                                                                            (3)  

Where 1 2 3 4( ), ( ), ( ), ( ), ( ), ( )a x a x a x a x f x x  and ( )x  are bounded and continuously 

differentiable functions on (0,1) ,  is the singular perturbation parameter (0 1)  ,  

and    are the delay and the advance parameters respectively (0 ( );0 ( )).o o      
 

These equations are widespread in many branches of sciences and engineering and have been 

used for many years in control theory, description of the so-called human pupil-light reflex 

and evolutionary biology [9-10]. The arguments for small delay problems are found 

throughout the literature on epidemics and population  where these small shifts play an 

important role in the modeling of various real life phenomena [11]. There is research dealing 

with the solution of these equations numerically, for example the  mixed finite difference 

method[19], numerical integration method [10], a domain decomposition method[3],  

presented a fitted approach[1]. 

By using Taylor  series expansion in the neighborhood of the point x , we have 

     ( ) ( ) ( ),y x y x y x                                                                                                     (4) 

     
),( ) ( ) (y x y x y x                                                                                                    (5) 
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by substituting  Eqs. (4) and (5) into Eq. (1), we get an asymptotically equivalent singular 

perturbation problem of the form: 

      
( ) ( ) ( ) ( ) ( ) ( ),y x p x y x q x y x f x    

                                                                      
(6) 

with boundary conditions 

     0 ,(0) (0)y                                                                                                                 (7) 

    1,(1) (1)y                                                                                                                    (8) 

where  

          
1 4 2( ) ( ) ( ) ( ) ,p x a x a x a x                                                                                      (9) 

          
2 4 3( ) ( ) ( ) ( ).q x a x a x a x                                                                                       (10)

 Since 0 1   and 0 1  , the transition from Eq. (1) to Eq. (6) is admitted ([1] and [4]) 

and the solution of Eq. (6) will provide a good approximation to the solution of Eq. (1). 

2. Cubic B-spline method 

In this section we use the cubic B-spline collocation method to compute the approximate 

solution of Eqs. (1)–(3).  It can be written as a a linear combination of cubic B-splines basis 

functions[2], [12-13 ]. 

Consider equally spaced knots of a partition 0 1 2: ...n na x x x x b        on ,a b   , 

with mesh size
b a

h
n


 . Let ( )

3
S n be the space of cubic spline functions over the partition 

n .  The B-splines of degree zero are defined by 

                              

10
1 ,

( )
0 ,

i i

i

if x x x
B x

otherwise

 
 
                                                           (11) 

and those of degree k Z  are  defined recursively in terms of B-splines of degree 1k   by 

                      
1 11

1

1 1

( ) ( ) ( ).k k ki i k
i i i

i k i i k i

x x x x
B x B x B x

x x x x

  


   

    
    

    
                             (12) 

For  0, 1, 2,...i   
 [14-15]. The basis functions 

k

iB  which defined by (12) are called B-

splines of degree k . Applies recurrence relation (12) and assuming the partition n ,  the non-

uniform B-splines up to degree 3 are given by[16-18] : 
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3( )

1( )( )( )
3 2 1

2( ) ( ) ( )( )( )
2 3 1

( )( )( ) ( )( )( )
3 2 2 1 3 3 1 2 1

2( )( )
4 1

( )( )(
4 1 3 1 2 1

3( )

x xi if x x xi ix x x x x xi i ii i i

x x x x x x x x x xi ii i i

x x x x x x x x x x x xi i ii i i i i i i i i

x x x x
i i

x x x x x x
i i i i i i

B x
i


 

  
  

    
  

     
        

 
 

  
     



1 2)

2( )( ) ( )( )( )
3 4 1 3

( )( )( ) ( )( )( )
3 3 1 3 1 4 1 3 1 3 2

2( ) ( )
4 2

2 3( )( )( )
4 1 4 2 3 2

3( )
4

(
4

if x x x
i i

x x x x x x x x x xi i i i i

x x x x x x x x x x x xii i i i i i i i i i i

x x x x
i i if x x x

i ix x x x x x
i i i i i i

x x
i

x x
i i

 
 

    
   

     
          

 
   

   
     





 

3 4)( )( )
1 4 2 4 3

0 .

if x x x
i ix x x x

i i i i

o w






















  

      



 

We apply this recursion to get the cubic B-spline, it is defined as follows: 

3

3( )
2 2 1

3 2 2 33( ) 3 ( ) 3 ( )
1 1 1 1

13 3 2 2 3( ) 3( ) 3 ( ) 3 ( )6 1 1 1 1

3( )
2 1 2

0

x x if x x x
i i i

x x h x x h x x h if x x xii i i i

B x x x h x x h x x h if x x xi h ii i i i

x x if x x x
i i i

if otherwise

   
  


            


          

   
   

  



                                                                                                                                                                         

(13)                

The numerical treatment for solving (1)–(3) using the collocation method with cubic B-spline 

is to find an approximate solution ( )Y x  for the exact solution ( )y x  in the form 

                                  
1

1

( ) ( )
n

i i
i

Y x c B x




                                                                              (14)     

 

where ic   is unknown  real coefficient and ( )iB x  are cubic B-spline functions which defined 

in Eq.(13). 

It is require that Eq. ( 14  ) satisfies our boundary value problem (BVP) (6-8  ) at ix x where 

ix  is an interior point. That is  

                              ,( ) ( ) ( ) ( ) ( ) ( )i i i i i iY x p x Y x q x Y x f x                                          (15) 

                                 
 

and the boundary conditions are 

 

    0( )Y x   for 0 ,x a  

    ( )nY x   for ,nx b  
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from  Eq. (14), we have 

    1 1 1 1 2 2( ) ( ) ( ) ( ) ( ),i i i i i i i i i i i i iY x c B x c B x c B x c B x          

    1 1 1 1 2 2( ) ( ) ( ) ( ) ( ),i i i i i i i i i i i i iY x c B x c B x c B x c B x     
                                                  (16) 

    1 1 1 1 2 2( ) ( ) ( ) ( ) ( ),i i i i i i i i i i i i iY x c B x c B x c B x c B x     
         

 

and these yield 

1 1 1 1

1 1 1 1

2 2 2 2

[ ( ) ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( ) ( )] ( ).

i i i i i i i i i

i i i i i i i i i

i i i i i i i i i

i i i i i i i i i i

c B x p x B x q x B x

c B x p x B x q x B x

c B x p x B x q x B x

c B x p x B x q x B x f x









   

   

   

  

   

   

    

 

 

The values of successive derivatives ( )( ), 1,0,..., 1; 0,1,2r

iB x i n r  
 
at nodes, are 

listed in Table 1. 

 

Table 1: Coefficients of cubic B-spline and its derivative at nodes ix .  

 

 
1ix   ix  1ix   else 

( )iB x  1

6
 2

3
 1

6
 0 

(1) ( )iB x  1

2h
  

0 1

2h
 

0 

(2)( )iB x  1
2h

 
2
2h

  
1
2h

 
0 

 

 

If we combine the values of Table 1  and Eq. (16),  we obtain 

     

2 2[6 3 ( ) ( ) ] [ 12 4 ( ) ]
1

2 2[6 3 ( ) ( ) ] 6 ( ).
1

c p x h q x h c q x hi i i ii

c p x h q x h h f xi i ii

 



    


   


                                       (17) 

Now we apply the boundary conditions:

 

0 1 1 0 0 0 0 1 1 0 2 2 0

1 1 1 1 2 2

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,n n n n n n n n n n n n n

Y x c B x c B x c B x c B x

Y x c B x c B x c B x c B x





 

     

    

    
                  (18) 

   where the value of   ( )iB x  at  0x x  and nx x  are given                 
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1 0 1

0 0

1 0 1

2 0 2

1
( ) ( ),

6

4
( ) ( ),

6

1
( ) ( ),

6

( ) 0 ( ),

n n

n n

n n

n n

B x B x

B x B x

B x B x

B x B x

 





 

 

 

 

                                                                                                                   

(19)           

therefore, 

                       
4 6 ,

1 0 1
c c c   
                                                                                   (20)                       

                      1 14 6 ,n n nc c c                                                                                     (21)    

coupling Eqs. (17)- (21) lead to a system of  ( 1)n  linear equations AY B  in the  ( 1)n   

unknowns, where 

0 1 1

2 2 2

0 1 2 1

[ , ,... , ] ,

6[ , ( ), ( ),..., ( ), ] ,

T

n n

T

n n

Y c c c c

B w h f x h f x h f x w








 

and the coefficient matrix A  given by 

 

                           

1 2

1 1 1

2 2 2

2 2 2

1 1 1

3 4

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

n n n

n n n

g g

a b r

a b r

A
a b r

a b r

g g

  

  

 
 
 
 
 
 


 
 
 
 
 
 
 

 

where , ,i ia b and ig  are define below 

2

2

2

6 3 ( ) ( ) ,

12 4 ( ) ,

6 3 ( ) ( )

i i i

i i

i i i

a p x h q x h

b r x h

r p x h q x h
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1 0 0

2 0 0

3

4

2

0 0 0

2

4 ,

,

,

4 ,

( ) ,

( ) ,

n n

n n

n n n

g b a

g r a

g a r

g b r

w h f x a

w h f x r





 

 

 

 

 

 

 

since A is aa non-singular matrix, so can solve the system  AY B    for 0 1 1, ,... ,n nc c c c

substituting these values in Eq. (14), to get the required approximate solution. 

3. Error Analysis 

By substituting the blending function of Table 1 into Eq. (16), we have 

              
1 1

1 2 1
( ) ( ),

6 3 6
i i i i iY x c c c y x    

                                                               
 (22a) 

              
1 1

1 1
'( ) '( ),

2 2
i i i iY x c c y x

h h
                                                                         (22b) 

              
1 12 2 2

1 2 1
"( ) "( ),i i i i iY x c c c y x

h h h
    

    
                                                        (22c)             

 

then,  the following relationships can be obtain: 

   
   1 1 1 1

1
'( ) 4 '( ) '( ) ( ) ( ) ,

6 2
i i i i i

h
Y x Y x Y x Y x Y x                                                        (23a) 

  
   2

1 1( ) 6 ( ) ( ) 2 2 '( ) '( ) ,i i i i ih Y x Y x Y x h Y x Y x 
                                                     (23b) 

now, define 1( ( )) ( )i iE Y x Y x  , Eq. (23a) can be written as[ 6 ]  

     

1 11
4 ( ) ( ).

6 2
i i

h
E E Y x E E y x                                                                            (24) 

Morever, we have 

( )

0 0

( ) ( )
( ) ( ) ( ) ( ),

! !

i i i
hD

i i

h Y x hD
EY x Y x h Y x e Y x

i i

 

 

 
     

 
   where 

d
D

dx
 , 

It implies that
hDE e .  Similarly,  we have 

1 , , ,hD m mhD m mhDE e E e E e       

can be write in the expansion form of powers hD . Therefore, the above Eq. (24) can be 

expresses as [14 ]. 

2 4 6 2 3 4 5 6 71 ( ) ( ) ( )
1 ... ( ) ... ( ),

3 2! 4! 6! 3! 5! 7!
i i

hD hD hD h D h D h D
Y x D y x

    
            

    
 

and, it can be simplify  
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2 3 4 5 6 7

2 4 6

...
3! 5! 7!

( ) ( ),
( ) ( ) ( )

1 ...
6 72 2160

i i

h D h D h D
D

Y x y x
hD hD hD

 
    

  
  
     
  

 

 
2 3 4 5 6 7

2
2 4 6 2 4 6

( ) ...
3! 5! 7!

( ) ( ) ( ) ( ) ( ) ( )
1 ... ... ... ( )

6 72 2160 6 72 2160

i

i

h D h D h D
Y x D

hD hD hD hD hD hD
y x

 
      

 

    
            
     

 

2 3 4 5 6 7 2 4 6

4 5 6 7

( ) ( ) ( )
... 1 ... ( )

3! 5! 7! 6 72 2160

... ( ),
180 1512

i

i

h D h D h D hD hD hD
D y x

h D h D
D y x

  
          
  

 
    
 

 

hence, 

4 (5) 61
( ) ( ) ( ) ( ).

180
i i iY x y x h y x O h

 
    

 
 

By using the same approach for Eq. (23b), we can derive 

2 (4) 4 (6) 61 1
( ) ( ) ( ) ( ) ( ).

12 360
i i i iY x y x h y x h y x O h

   
       

   
 

 

4. Numerical Examples 

The exact solution of singularly perturbed differential-difference equation:[10] 

 

1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),y x a x y x a x y x a x y x a x y x f x         
 

0 1x 
 

under the boundary conditions 

  ( ) ( ),y x x   on  0,x    

( ) ( ),y x x     on  1 1 ,x     

with constant coefficients is given by  

1 2( )
1 2

m x m x f
y x c e c e

c
    

2[ ( )]
3 3 ,

1 1 2[( ) ]
3

m
f c e f c

c m m
e e c

    




 

1[ ( )]
3 3 ,

2 1 2[( ) ]
3

m
f c e f c

c m m
e e c
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2

1 2 4 1 2 4

1

[ ( ) ( ) 4

2

3
a a a a a a

m
c    



      
 , 

2

1 2 4 1 2 4

1

[ ( ) ( ) 4

2

3
a a a a a a

m
c    



      
 , 

2 3 4( ) ,c a a a  
 

we now consider three numerical examples to illustrate the comparative performance of our 

method. All calculations are implemented by Maple. In Examples 1, 2 and 4, we applied the 

scheme to solve these problems for different values of and compared with exact solution in 

Figures 1, 2 and 3 respectively.  

Moreover, we  computed solutions at grid point, the observed maximum absolute errors 

max ( )i iL y y x   ) where iy is numerical solution and ( )iy x is exact solution are 

tabulated in Tables 2,3 and 4 (for 
3 410 , 10    ) compared our result with the results given in 

domain decomposition method [3] and mixed finite difference method [19]. This shows that our 

results are more accurate. 

 

Example 1: Consider the singularly perturbed differential difference equation with left end 

boundary layer: [3] and [19] 

2 3( ) ( ) ( ) ( ) 0y x y x y x y x      
 

( ) 1, 0, ( ) 1,1 1 .iy x x y x x          

 

 

Figure 1: Comparison  the exact and numerical solution (
310 and  0.1     ) for 

Example 1. 
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Figure 2: Comparison  the exact and numerical solution (
410 and  0.1    ) for 

Example 1. 

 

Table 2: Comparison of the maximum absolute errors of cubic B- spline method of Example 

1 with  the maximum absolute errors of [3] and [19]. 

 

 

 

Example 2 : Consider the singularly perturbed differential difference equation with left end 

boundary layer: :[3]and[19] 

2( ) ( ) 3 ( ) ( ) 0y x y x y x y x        

( ) 1, 0, ( ) 1,1 1 .y x x y x x          

 

 

x 
                 

310 , 0.1                   
410 , 0.1     

Cubic B-

Spline 

 [3] [19] Cubic B-

Spline 

 [3] [19] 

0.1 2.30E-8 

 

3.694E-4 3.694E-4 

 

5.2 E-9 5.89661 E-5 1.E-6 

 

0.2 2.28E-8 

 

4.127 E-4 4.127E-4 4.6 E-9 

 

5.7782 E-5 3.E-6 

 

0.4 2.70E-8 

 

5.152 E-4 5.152E-4 4.4 E-9 

 

5.29203E-5 1.E-6 

 

0.6 7.8E -9 

 

6.428 E-4 6.429E-4 1.25 E-8 

 

4.30033 E-5 3.E-6 

 

0.8 3.67E-8 

 

8.017 E-4 8.017E-4 1.215 E-7 2.62473 E-5 6.E-6 

 

0.9 2.27E-8 

 

8.956 E-4 8.956E-3 

 

8.09 E-8 1.44433 E-5 4.E-6 
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Figure 3: Comparison  the exact and numerical solution (
310 and  0.1     ) for 

Example 2. 

 

Figure 4: Comparison  the exact and numerical solution (
410 and  0.1    ) for 

Example 2. 

Table 3: Comparison  the maximum absolute errors of Example 2 with  the maximum 

absolute errors of [3]and[19]. 

 

 

X 

310 , 0.1     
410 , 0.1     

Cubic B-

Spline 

 [3] [19] Cubic B-

Spline 

[3] [19] 

0.1 4.88E-8 4.962 E-4 4.9E-5 9.7E-9 4.962 E-4 0.6E-5 

0.2 4.82E-8 4.988 E-4 5.3 E-5 1.04E-8 4.988 E-4 1.9 E-5 

0.4 2.76E-8 4.464 E-4 6.2 E-5 7.4E-9 4.464 E-4 1.0 E-5 

0.6 4.67E-8 3.614 E-4 0.73E-4 2.20E-8 3.14 E-4 1.7 E-5 

0.8 1.263E-7 2.172 E-4 0.85E-4 1.008E-7 2.172 E-4 1.9 E-5 

0.9 1.182E-7 1.207 E-4 9.2 E-5 6.57E-8 1.207 E-4 1.5 E-5 
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Example 3 :Consider the singularly perturbed differential difference equation with left end 

boundary layer:  [3] and [19] 

( ) ( ) 2 ( ) 5 ( ) ( ) 0y x y x y x y x y x           

( ) 1, 0, ( ) 1,1 1 .y x x y x x          

 

Figure 5: Comparison  the exact and numerical solution (
310 and  0.1     ) for 

Example 3. 

 

 

Figure 6: Comparison  the exact and numerical solution (
410 and  0.1    ) for 

Example 3. 
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Table 4 :Comparison  the maximum absolute errors of Example 3 with  the maximum 

absolute errors of [3] and [19]. 

 

 

x 
              

310 , 0.1             
410 , 0.1     

Cubic B-

Spline 

[3] [19] Cubic B-

Spline 

[3] [19] 

0.1 7.4E-11 2.13 E-5 6.8 E-6 1.417E-9 4.3E-6 1.346461 E-6 

0.2 1.46E-10 4.27 E-4 1.43 E-5 2.259E-9 6.9 E-6 1.9593 E-6 

0.4 4.0E-10 1.351 E-4 2.74E-4 6.68E-9 1.78 E-5 5.71252 E-6 

0.6 2.3E-10 4.804 E-4 7.82 E-5 7.10E-9 4.10 E-5 1.63443 E-5 

0.8 1.04E-8 1.6990E-2 2.185E-3 2.7E-9 7.69 E-5 4.5098E-4 

0.9 2.97E-8 3.0291 E-3 2.006E-3 6.15E-8 2.E-7 7.371 E-5 

 

 

5. Conclusion 

The cubic B-spline method is developed for the approximate solution of singularly perturbed 

delay differential equations of second order with left and right boundary in this paper. The 

approximation errors are discussed. Three examples are considered for numerical illustration 

of the method. Numerical result are presented in Figure (1, 2, 3, 4, 5 and 6) with 
3 410 ,10    and compared with the exact solutions, as for the Tables (2, 3 and 4) we 

compared the numerical solution with other methods. The numerical results obtained indicate 

that the proposed method has high accuracy, which makes it very encouraging to deal with 

solving this type of problems. 
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 الوستخلص

فزق الحفاضلً المضطزب الفزدي مه الذرجة معادلات الة لحل حكعٍبٍال  B-splineطزٌمة    جم جطبٍك فً هذا البحد

واخحبزت الطزٌمة بثلاخ امثلة وضحث بان  .جمث مىالشة جحلٍل الخطأ للطزٌمة الممذمةالٍسزى والٍمىى.  الثاوٍة مع الحذود

 لابلة للحطبٍك ودلٍمة. ةمالطزٌ

 

 المكعبة, جحلٍل الخطأ, الحل الحمٍمً. B-splineمسائل الاضطزاب المفزد, طزٌمة   :الوفتاحيت الكلواث

  


