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Abstract
The aim of this work is to study the T-periodic solution of neutral type of stochastic
functional differential equations with infinite delay (NSFDEwID), where we used the Lyapunov’s
second method to show the boundedness of the solution x(t) and the solution map x, to the above
equations. Contraction mapping principle and Banach fixed point theorem are used in this work.
We introduced an example in the end of this paper to illustrate the results of this work.
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1 Introduction

It is well known that the periodic phenomena have significant roles in nature, many
systems behave periodically, for example, an average of repair or failed an item in a product, the
wave vibration, the life cycle, environmental adjustments in four seasons, a satellite orbiting the
Earth. Nevertheless, the challenge is how to get the periodic solutions of some periodic attitude
after modelled via differential systems, whether the differential system is ordinary or stochastic.
However, in the sensible case, the systems are often subject to stochastic perturbation. So, recently,
the periodic solutions of SDEs have attracted great interests due to their applications in many ways.
We refer the reader to [1-5] and references therein. Zhang and his colleagues [6] adopting the
definitions 3.3 and 3.4 investigated the existence and uniqueness of stochastic periodic solutions to
SDE in the form:

dx(t) = b(t; x(£))dt + o (t; x(£))dw(t) t > 0. (2.1)

Hu and Xu [7] have investigated on the periodic stochastic Lotka-Voltra competitive-model with
bounded delays and the periodic stochastic neural networks with infinite delay. They have
generalized and improved the corresponding results in [4, 5,7, 8], where the existence theorems are
generalized of M-valued periodic Markov process and M is a Polish space. Asker in [9, 10] studied
Wellposedness and stability of neutral stochastic functional differential equations with infinite
delay (NSFDEwID) in state space with the fading memory C,..

The organization of this paper is as follow: preliminaries and proofs of required Lemmas by using
Lyapunov’s second method introduced in section 2. In section3 we study the T-periodic stochastic
process by using contraction mapping principle and Banach Fixed Point Theorem.

In order to explain our results we introduce an example in section 4.
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2 Perliminaries

Throughout this paper, unless otherwise specified, we use the following notation. R¢ denotes
the usual d-dimensional Euclidean space, | - | norm in R%. If A is a vector or a matrix, its transpose
is denoted by AT; and |A| = +/ trace (AT A) its trace norm. Denote by X7Y the inner product of

X,Y € R%. We choose the state space with the fading memory to be C, defined as follows: for
given positive number 7,

Cr = {p € C((=%0,0; R): | @ Il = sup_co<g<oe™|p(8)| < o0}, (2.2)

where C((—o0,0]; R%) denotes the family of all bounded continuous R¢-value functions ¢ defined
on (—o,0] to R% with the norm [lell, . C. is a Banach space with norm
|l @ Il,= Sup_e<g<oe™®|@(0)| < o, see [15, 2], contains the Banach space of bounded and
continuous functions and forany 0 <7, <1, < ,(,. € (..

Let (2, F, P) be a complete probability space with a filtration {F}c(o,+0) Satisfying the usual
conditions (i.e. it is right continuous and F, contains all P-null sets). Let K denote the family of all
continuous increasing functions k: R, — R, such that x(0) = 0 while k(u) > 0 for u > 0. Let K,
denote the family of all convex functions k € K while K, denote the family of all concave
functions x € K [11]. Let Iy denote the indicator function of a set B. M?([a, b]; R%) is a family of
process {x(t)}q<c<p IN L2([a, b]; RY) such that E f(f |x(t)|?dt < oo . The notation P(C,) denotes
the family of all probability measures on (C,, B(C,)). Denote C,(C,) the set of all bounded
continuous functional.

For any F € C,(C,), F: C, - R and (:) € P(C,), let n(F): = fcr F(¢p)r(dg). M, stands for

the set of probability measures on (—oo,0], namely, for any u € M,, f_ooou(de) = 1. For any
r > 0, let us further define M, as follows, see [12]:

M,:={u € Mo;pn®:= [°_e7"0p(d6) < oo}, (2.3)
Obviously, there exist many such probability measures and here we supply an example:

Example 2.1 let u(d) = eP9d6. Clearly, for any q < B,
u@ = [° ¢=a9eh0p = ﬁ—iqf_"oo(ﬁ — q)efF-Ddg = ﬁ < o, (2.4)

Which implies 4@ € M, for anyg < .
Consider a d-dimensional neutral stochastic functional differential equations with infinite
delay
d{x(t) = D(t; x¢)} = b(t; xp)dt + o(t; x.)dw(t),xg =& = {£(0): =0 <O <0} €(C,, (2.5)
where
Xt =x(t+0)—00<0=<0

and b,D:R X C, » R%, 6:R X C, » R*™ are Borel measurable, F,-adapted and there is some
positive constant T such that b(t +T;¢) = b(t;p),c(t +T;¢p) = a(t;p)and D(t + T; ¢p) =
D(t;p)and E(t+T) =&(t) for anyt € Rand ¢ € C,., i.e. b, g,D and the initial data & are T-
periodic in time t. w(t) is an m-dimensional Brownian motion. Also, the coefficients b(t; x;),
o(t; x¢) and the neutral term D (t; x;) of the system (2.5) satisfy the following assumptions:
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(A1) For u € M,, and ¢, ¢ € C, there exist k € (0,1) with u?™ < 1 such that:

0
ID(t; ) =D& P)I> <k [_ 19(0) — p(0)|°1(dd), and D(0;0) =0 (2.6)
(A2) Let b be a continuous function. Assume there exist constants A,,14,,45,4, >0 , and
probability measure u € M,, such that for any ¢, ¢ € C,

[(0) = $(0) — (D(t; ) — D(&; pN]I" [b(t; ) — b(6; P)] < —A1|9(0) — p(0)|* +

2 [°10(6) — ¢(6)12u(db), 2.7)
And for any function o
lo(t; @) — o(t; P)|* < A3]19(0) — p(0)|* + A4 f_ooo lp(8) — P (8)|*u(do). (2.8)

Lemma 2.1 Assume that D, b and o satisfy the conditions (2.6), (2.7) and (2.8) respectively, then
there exists a unique global solution of the system (2.5).

Under Assumptions (Al) and (A2) , we observe that the system (2.5) has a unique global
continuous solution x(t) on t > 0 almost surely, which is continuous and F, - adapted and can be
express as follows:

x(8) = £(0) = D(0; &) + D(t; x,) + [, b(t; x)ds + [ o (t; x5)dw(s). (2.9)

For the obvious benefit of Lyapunov’s second method that does not need the knowledge of
solutions of equations and thus has demonstrated great power in applications, we apply it here to
prove the required lemmas. There are several references usable explain the main ideas of
Lyapunov’s second method for SDEs e.g, Khasminiskii [3], Mao [5], Kushner [12] and Arnold
[14].

Now,

if V€ C*1(R% X R,;R,), define the operator L such that

LIV(x(@®) = D(&; xe))] = Ve(x(t) = D (& %)) + Ve (x(t) — D(& x))b(t; x¢)

+ % trace[a” (t; x:)Vex (x(t) — D(t; x.))a(t; x¢)],
Where:

v v o%v ..
Ve = (a_xll""a)v xx — (W)nxnr Lj=1,..,n

The following lemma gives a criterion on the boundedness of 2-th moment for the solution.

Remark 2.2 [12, 9] Noting that for any positive A < 2r, correspond to the definition of the norm
Il x¢ II?, it is easy to see that:

E . 12 = e E 1| § 12+ E (supocser 1X(5) ). (2.10)

Lemma 2.3 For the system (2.4) let Assumptions (A1) and (A2) hold. If, in addition, there exist
functions V € C*1(R% x R,; R,), Kk, € K,, k, € K, and positive numbers A, § such that

K1 (SUPo<sse X () — D (85 x5)1?) < V(x(s) — D(s; x5))
< Ko (Supo<sse|x(s) — D(s; x5) %) (2.11)
and
LV(x(t) = D(t;x)) < —AV(x(t) = D(t;x)) + B (2.12)
for all x(s) — D(s; x5) € C,. Then for any initial value ¢ € C,, the 2-th moment of the solution
x(t) of equation (2.5) is bounded, say
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Elx(H)|* <K (2.13)
for all t > 0, where K is a positive constant. Moreover,
E Il x; I12< K. (2.14)

Proof: For each integer k, define the stopping time
T, =inf{t =2 0:ll x; l,=n} =inf{t = 0:|x(t)| = n},
itis clear that 7,, T o0 a.s. as n — oo. By It6’s formula, we have
E[e* "DV (x(Tn A1) = D(Tn A Xga0)|P] = E[V(x(0) — D(0;x0))] +
E fOT"M e’LV (x(s) — D(s; x5))ds + AE fOT"Me’lsV(x(s) — D(s; x5)ds. (2.15)
By (2.11) and (2.12), it follows that
Tt

E[eA 01, (Jx(ry A £) = D(tn At Xe,00)| )] < Elio([%(0) = D(0; 20)[2)] + Ef e**Bds.
0

If n » oo, then

Efe** 11 (Jx(t) = D(t;x)1%)] < Erz(Ix(0) — D(0;x0)1%)] + §[ *—1],
Thus
E[k; (1x(8) = D(t; x)1?)] < E[e iy (12(0) — D(0; x0)[2)] + £ [1 = 7).
Jensen’s inequality yields to
k1 (E[12(t) = D(t: x)1?]) < e M (E[1x(0) — D(0; x0)1?]) + 5.

Hence
E[lx(£) = D(t x)1?] < K7 (e Ao (E[1x(0) — D(0; x) 2] + . (2.16)
By the assumption (Al), the fact [(3.14), from [2]] and the equation (2.16), for any

e > 0, we have
SUPo<s<t (E[1X()[?]) = supocs<¢ (E[|x(s) — D(s; x5) + D(s; x5)|*])

1
< [1 + e]lsupocs<c(E[lx(s) — D(s;x)I?]) + [Z + Lsupocs< (E[ID(s; x5)1°1)
< [1+ elrg* (e Mz (E[1x(0) — D(0;x)I%]) +—) +k[ + 1[e™uPE 11§17+
Supo<s<t (E1x(8)|%)],

Take ¢ > %k impliesy = k(1 + i) < 1, we arrive at
1 — -
Supo<sse (E| x(5)[2) < 12k (e Mo (B 1%(0) = D(0; x0)|2]) +5)
—-2s, (D)
BT, (2.17)

Hence,

< &9, b, (2.18)

Thus, there exist a S > 0 such that E[x(s)|* < %l;’g)xl‘l(g) for allt = S. Also, because of

continuity of |x(s)|?, there is a K, > 0 such that |x(s)|? < K, fort > S.

Let K = max{%x[l(g),l(o}, this mean we have for all ¢ > 0, E|x(s)|? < K. Moreover,
since
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E Il x¢ I2< e || € 12+ E(supo<s<|x(s)[%), (2.19)
Thus,
limsup,o(E |l x; I12) < K.

Now we consider the difference between two solutions of (2.4) starting from different
initial data, that is

d (x(6:8) = x(tm) = D(&:%.()) + D(&x.(m)) = {b(t; % (8)) — b(t; 2, ()}t +
{0(6:x(8)) = o (&5 xc(M)}dw(2), (220)

Where, x(t; §) and x(t; n) two different solutions with two different initial data &, n to the system
(2.5). The following lemma will show that E || x.(&) — x.(n) II? is uniformly continuous on [0, o),
which will be used later. And the idea for our proof comes from [6,9,11].

Lemma 2.4 Suppose all the conditions of Lemma 2.3 hold and 21; > 7313 + 21,u?™ +
73A,u® and 1 € (0,% [2A; — 7323 — 22,5 ") — 732,u@D] A 2r) where M = (1 + k) (1 +

u@®). Then E |l x.(&) — x.(n) II? are uniformly continuous on the entire t € [0, o). Moreover,
lmE 1 2 (§) — x:(n) I7= 0.

Proof: By [Lemma 4.4 [2]], E Il x,(§) — x,(n) II2< C4E || € — 1 II? e~*t where Cg4 is a constant
dependent of only A, k and 7.

This implies that E || x,(&) — x,(n) II? is uniformly continuous on the entire [0, o] and
HmE 1 x,(§) = x(n) 7= 0.

For a given function U € C*>*(R x R* x R,; R,) and any two solutions of (2.4) x(t), y(t)
where t > 0, we define an operator LU: R X R% x R% — R associated with the equation (2.18) by

LU@x() = D(t;x),y(@) = D(t;ye)) = Up(x(t) = D(t; %) — (y(t) = D(t;y0)) +
Ux(x(t) = D(t;x) — (v() = D(&ye)) [b(E %) — b(Ey)] + %tmce[(U(ti Xt) —
0(t; ) U (x(t) = D(t; ) — v (t) = D(&;¥)) (0 (t; ) — o(t; )]

Lemma 2.5 Let the conditions of the Lemma 2.3 hold. Assume further that there are functions
U € C?*(RXR*XR,),k; € K, and k, € K, such that
U(x(t) — D(t; x)) < k3(|x(t) — D(t;x)|?) for all x(t) €C, (2.20)
And
LU(x(t) = D(t;x¢), y(t) — D(t; y¢)) < —ra(|x(t) = D(t; %) — (y(2) —
D(&y)I?), (2.21)
for all x(t),y(t) € C,.
If initial values ¢ and n for the solutions x and y, respectively, are in C,., then
UimE|x(t) = y(t) = (D(t; %) = D(5y)|* = 0 (2.22)
Proof: For any positive number n, define
a, = inf{t =2 0:|x(t) —y(@®)| = n} =inf{t = 0: 1l x, — y; II,=n}.
Itis clear that a,, = o0, when n — oo,
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Set t, =a, At and Fx;y(tn) = x(ty,) — y(tn) — (D(tn xtn) — D(ty; Ytn)) , by applying
1t6’s formula to U ([, (t,)) yields
EU(Iyy(t) = EUE =1 — (D(ty; &) = D(twsm)) + E [ LU (I (5))ds.
So by conditions (2.20), (2.21) and then letting n — oo, we have
0 < E(s(1§ =1 = (D(5:8) = DEM)ID) = E [ k41T (5)]?)dls,
Thus
E [} k4 (Il ()13)ds < E(i3(1E =1 = (D(£:€) = D(Em)2).
Using Jensen's inequality results in

[y 4By ()1)ds < k3 (E(IE =1 = (D(£:€) = D(Em))I?) < . (2.23)

Now we claim gimElfx;y(t) 2 =0, If this assertion is not true, then there is some ¢ > 0 and a
sequence {t, },»1 Satisfying 0 < t, <t, + 1 < t,,4 such that
gimE|Fx;y(t)|2 >¢g n>1.
By Lemma 2.4 , there is a positive constant C such that:
IEIFx;y(t)IZ - Elfx;y(s)lzl <C.
Let§ = 1A (e/2C), then, fort, < s < t, + &, we can get
&

E|Ly($)I1? 2 Ellgy(t)|? = EIE |y ($)|? — ElLgy (t))I?] 2e—-C2e—-C62.

Consequently
- o  (tn+d
Jo ®a(E(Lgy()1Dds 2 Xia [, Ka(E(I1Ty (8)|?)ds

© nté
> S [ ke Gds (2:24)
But this is in contradiction with (2.23). So
tlimE|1“x;y(t)|2 =0, (2.25)

3 T-periodic stochastic process

In this section, we present and prove our main theorem. The main technique that we use in
this part is based on contraction mapping principle and Banach Fixed Point Theorem (Lyapunovs
second method).

Definition 3.1 Let (X, d) be a metric space. Then a map f: X — X is called a contraction mapping
on X if there exists q € [0,1) such that d(f(x), f(y)) < qd(x,y) forall x,y in X.

Theorem 3.2 Banach Fixed Point Theorem. Let (X, d) be a non-empty complete metric space
with a contraction mapping f: X — X. Then f admits a unique fixed-point x* in X (i.e. f(x*) = x).
Furthermore, x* can be found as follows: start with an arbitrary element x,, in X and define a
sequence {x,} by x,, = f(x,_1), then x,, = x*.

Now, we state the definition of periodic stochastic process and stochastic periodic solution.
Definition 3.3 [6] A stochastic process x(t),t = 0 is said to be a T-periodic stochastic process, if
the stochastic processes y(t): = x(t+ T),t = 0 and x(t), t = 0 have the same finite-dimensional
distributions.
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Definition 3.4 [6] If x(t),t = 0 is a solution of (2.5) and x(t) is a T-periodic stochastic process,
then x(t) is said to be a stochastic periodic solution with period T of (2.5).

Theorem 3.5 Assume that the conditions of Lemmas 2.3 and 2.5 are all satisfied, then (2.5) admits
a unique T-periodic stochastic periodic solution.

1
Proof: For an arbitrary &;n € L?(£2; C,.), define a metric d(&,n) = (E||¢ — nl|?)z, then L2(2; C,)
is a complete metric space. From Lemma 2.3, we get that for any t € [0, ), the solutions
x(6:8);x(6n) € L2(2;C).
Define a mapping f: L2(2; C,) — L*(12; C,) by f (&) = x(T; &), there is a constant M > 0
such that for any integer m > M, the mapping f™(§) = f(&) o --- o f(§) = x(mT, &), the mapping
f (&) composed with itself m times, then by Lemma 2.5, for any € € (0,1),

d2(F™(&); f™ () = d?(x(mT; €); x(mT; )
= E|x(mT;§) — x(mT;n)|?
<e2E N E—nl? = e2d%(E,n),

d(f™E); f™ ) < ed(,m),
Therefore, f is a contraction mapping on the complete metric space L?(£2; C,), and so there exists
a unique fixed point y € L2(2; C,) such thaty = fy = x(T,y).
Now we are in the position to prove that x(t; y) is the unique T-periodic stochastic periodic
solution of (2.5).
Under Assumptions (Al) and (A2), x(t; y) satisfy the following NSFDEwID:

x(t;7) = y(0) = D(0;¥) + D(t;x:(1)) + f, b(s; x5(¥))ds
+ [ o(s; 25 (¥))dw(s), t=0. (3.1)
Lett =T and t =t + T in (3.1) respectively, we get
x(T;v) =v(0) = D(0;y) + D(T; x¢4r(¥)) + fOT b(s; xs(y))ds

That is, by define the metric d,

+ [ a(s; xs(1))dw(s), (3.2)
x(t +T;7) = y(0) = D(0;¥) + D(t + T; xeer () + f * b(s; x5(¥))ds
+ 17 o (s 25 (1)) dw(s). (3.3)

Consequently from (3.2) and (3.3), we have
x(t+T;v) =x(T;v) = D(T; xt47(¥)) + D(t + T; Xt 47 (¥))
+ 1 (s ()ds + [y o (s x,(r)dw(s). (3.4)

Lets =r+T, W, = weyr — Wy, the probability space (£2; F; P) is fixed, then by the (3.4) we
have:

x(t+T;y) =x(T;7) —D(T;x0(¥)) + D+ T; xe47(¥))

+ [ b + T3 xpar (D)Ar + [ 0 + T5 Xy (1) AW (7).
Note that

b(t +T;x47 (V) = b x40 (¥)), 0@+ T; %007 (¥)) = 0 (& Xe47(¥)),
Therefore for t > 0,

x(E+T5y) = X(T;¥) = D(T; 20 (1) + D(t + T; Xeyr (1)) + [ b(rs Xpar (v))lr
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+ [ o (s X s (1)) AW (r) . (3.5)

Hence (w(t), {x(t;¥)}t=0) and (W (t),{x(t + T;y)};s0) are two weak solutions of (2.5) on
the same complete probability space (0, F, {F;}ts0, P).

By the property of Brownian motion, (w(t);so) and (Ww(t):s¢) have the same distribution.
Notice that the solution for NSFDEwID (3.1) is a pathwise unique strong solution, moreover
NSFDEwIDs (3.1) and (3.5) have the same formation, hence there is a measurable function F such
that

x(t;y) =F(w(s);Vs <t),P—a.s.
This means that for (3.5) we must also have
x(t+T;y)=F(W(s);Vs<t),P—a.s.
ThereforevA € B((R)™), and Vty, ..., t, € [0, ),
P((x(t1;¥)s s x(tn;v) €A) = P((x(t1 + TS ), ., x(tn + T;7) € 4),
moreover, initial values x(T;y) and y have the same distribution, hence we can get that x(T’;y)
and x(t + T; y) have the same finite-dimensional distributions. Since y is unique, we know that
x(t; y) is the unique T-periodic stochastic periodic solution of (2.4) and the proof is complete.
Remark 3.6 If the solutions of the system (2.5) have the property (2.13) and (2.23), then (2.5)
admits a unique stochastic periodic solution.

4 Example
In this section, to address the validity of the theory by applying the assumptions (Al), (A2)
and the Remark 3.6 we introduce an example of the system (2.5) which w(t) is a one-dimensional
Brownian motion.
Example 1: Consider the one-dimensional type of neutral SFDE with infinity delay:

0
d|x(t) — %j_ ezqu(cp)del = —alsin(t)|pdt + [|sin(t)|¢p

+[° e299|sin(t)|p(6)dbdw (t)|, (4.1)

With initial value x(t) = £ whent € (—oo,0]. Where a, q are positive numbers, ¢ € C, and w(t)
is a Brownian motion. It is clear that the equation (4.1) is periodic with T = 2m. Anyway, by

Hélder inequality for any u(d@) = e299d6 and q > % it is easy to check that:
(@) =D <52 )7, e 1p(8) — $(6)]7db.
Similarly, for any ¢ and ¢ € C,, define
b(¢) = —alsin(t)|¢p, a(¢p) = |sin(t)|¢ + f_oooezq9|sin(t)|¢(0)d9, we can show that:
[0(0) = #(0) — (D(¢) — D(¢N]"[b(9) — b(¢)] = [¢(0) — $(0) — %f_ooo e*1(p(8) -
¢(0))do " [—alsin(t)|p + alsin(t)|¢] < —alp(0) — ¢(0)|* +

a

=L [°e2%)p(8) — $(6) |7d6, (4.2)
And

6(9) = a(@)I? = |Isin(t)lp — Isin(D)|¢ + [, €29 (p(8) — $(6))d0|?

14+¢ (°
< (1 + &)|Isin(t)|e — |sin(t)|¢|? +T| f e (p(6) — ¢(6))do |
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< (1+8)|p(0) — (012 + == [°_ e*°|p(8) — $(6)|d0 (4.3)
Thus, from (4.2), (4.3) we get that: ;, = a, 4, = %,/13 =14+cand A, = % Hence, if ¢ = é
with g > % 21, > 7325 + 22,u @ + 732,u?") where u?” € M,, and

73(1+50)+73(1+8q)u ")
a> ! ,
4—#(2T)
The T = 2m periodic functions b, ¢ and the function D(¢) are satisfy the assumptions (Al) and
(A2). Now, suppose that for any t > 0,
b(t; x;) = —a|sin(t)|x(t),

D(t;x;) = —5 [’ €26 ds
1

4q
And
. t 2001 ..+
o(t;x;) = |sin(t)|x(t) + f_ooe %|sin(t)|ds
= |sin(®)|x(t) + [ €216~ |sin(t)|ds
= |sin(t)|x(t) + 22O 'S”‘“)'
Define

V(x(t) — D(t; x,)) = U(x(t) — D(t; x)) = c|x — ﬁ 2
Compute LV (x; t) associated with the equation (4.1) as
Ve(x(t) = D(t;x)) =0,

Ve(x(D) = D(t:x)) = 2¢(x — 7,

Vex (x(8) — D(85 %)) = 2c.
LV (x(t) = D(t; %)) = Ve(x(t) = D(t; x¢)) + Vi (x(t) — D(t; x.))b(t; x¢) +

1 1
Etrace[aT(t' X )Vex (x(t) — D(t; x0))a(t; x.)] = 2¢(x — E)(—a|sin(t)|x) +
, |sm(t)| 2 < ey 2 S 2,6, 4. ¢
c(Isin(t)|x + —=)* < —2cax” + 2~ +cx“ + X + e
_ _ 2 a+2 L
=c(—2a+ 1)x° + c(—zq )x + el (4.4)
Since (1 — 2a) < 0, we have

(2+a) 1
c(1-2a) LV(x(6) = D(t;xe)) = x* + (—2a2¢" T —2a)2¢?
24+a 1 24+ a 2+a
,_ @+ LD N CLT I
(2a —1)2q (1-2a)4q?> “(2a-—1)4q (2a — 1)4q

_ _ (2+a) 2 (2+a) 2

= (2a- 1)4q) ((Za 1)4q) (4-5)
Thus, fora = 3

LV(x(t) - D(t- X)) < —A(x — 1)2 +B (4.6)

Where, A = c(2a—1)and B = compute LU (x; y; t) associated with the equation

(4.1) as
LU(x(t) = D(t;xe) —y(t) + D(t; ye) =
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2¢(x — y)(—alsin(t)|(x — ¥)) + c(Isin(t)|(x — ¥))* < —2ca(x —y)* +c(x —y)*
= —A(x — y)=. 4.7)

Therefore, because of (Al), (A2) and the conditions of Lemma 2.3 and Lemma 2.5 are satisfied,
an application of Theorem 3.5 yields that the system (2.3) has a unique stochastic periodic solution.
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