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Abstract

In this study, a time stepping Taylor Galerkin/pressure correction finite element
scheme (TS5 —TG/PC — FEM) is employed to treat incompressible Newtonian flows.
In this context, Navier-Stoke partial differential equations have been used to describe
the motion of the fluid. The equations consist of a time-dependent continuity equation
for conservation of mass and time-dependent conservation of momentum equations.
Examples considered include a start-up of Poiseuille, flow in a axisymmetric
rectangular channel for the Newtonian fluid. This test is conducted by taking a
circular section of the pipe. The critical level of Re number is investigated under the
effect of various parameters. Moreover, the effect of viscosity variation and the
boundary maximum axial velocity ({t;),...) that imposed at the inlet upon the
solution is studied as well. In this manner, the findings reveal that, there is a
significant effect from viscosity variation and ((u;)...) value on the level of Re
number such that the extremely limit of Re number that can be reached was around
576 with (1. ). = 1 and g = 1. In contrast, the results shown that the influence of
viscosity variation was an opposite of what that was in the case of Re number
situation, where the high viscosity gave high level of density. The influence of
geometry design on the level of pressure drop and pressure coefficient is covered in

this article.
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1. Introduction

The solution of the system of differential equations governing the flow of Newtonian
fluids, has attached some considerable attention in the field of computational fluid

dynamics (CFD). For a simple shear flow, under constant pressure and temperature,

Newtonian fluids exhibit a linear relationship between shear stress and shear rate
through a constant viscosity. The behaviour of such fluids can be predicted on the
basis of the Navier-Stokes differential equations. This system is presented by the mass
conservation and momentum partial differential equations (see for example Bird et
al.[1] for details). Numerically, a time stepping Taylor-Galerkin/pressure correction

method (TS —TG/PC —FEM) is implemented in current study. This approach is

introduced by Townsend and Webster [2] to treat viscous incompressible flows of
Newtonian and non-Newtonian fluids. The main difference of this method from other
earlier mixed methods is that the velocity and pressure variables are disassembled.
Basically, the separation idea of the problem variables is inspired from the
investigation of Chorin [3]. Over the previous time, two essential trends have taken to
treat such governing equations. First way has known as the fractional step method,
which is favored by Gresho et. al. [4] and Donea et. al.[5]. In contrast, there is another
trend that be used to solve the governing equations of flow based on the velocity
correction approach (see Kawahara and Ohmiya [6]). The significant difference
between the two methods is that for the former the separation of velocity and pressure
is effected after the GFEM discretization of the differential equations, while for the

final, it happens at the differential equation stage.

On the other hand, the most suitable numerical technique within the finite element
framework for solution of the differential equations is a time stepping Taylor Galerkin

pressure correction (TGFPC) finite element scheme (for more details see Al-

Muslimawi [7]). This approach involves two methods, a Taylor Galerkin method and
a pressure correction method. The Taylor Galerkin method is a two-step Lax-
Wendroff time stepping procedure (predictor-corrector), extracted via a Taylor series
expansion in time (Donea [8], Zinenkiewicz et al. [9]). The pressure-correction
method accommodates the incompressibility constraint to ensure second-order
accuracy in time (see Hawken et al. [10], Aboubacar et al. [11]). Amazing attentions

spent to treat the flow problems in the cartesian coordinates by using
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TS —TG/PC— FEM (see for example [7], [10], [12], [13]). In contrast, for treating

the axisymmetric problems using this scheme is not easy, such that the studies around
the such problems were limitted. Thus, we spent more a concentration on this type of

interesting investigation. In this study, a (TS — TG/PC — FEM) is employed to solve

sets of differential equations. The novelty here is to study the effect of viscosity
variation and the boundary maximum axial velocity ((u,),....) on the system solution
that is taken to be steady state, incompressible, axisymmetric, and laminar, which has
not been addressed by researchers previously. In this context, Poiseuille (Ps} flow
along a two-dimensional planar straight channel under isothermal conditions is
studied. The main results of the current study focused on determining the critical

levels of Reynolds number {Re), which also reoresents the excited issue of this study.

Moreover, the geometry design reflected a significant effect on the level of pressure

drop and pressure coefficient.
2. Mathematical Modeling

The governing equations for incompressible Newtonian liquid, which consist of

momentum and continuity equations in the absence of body forces, can be stated as:

V-u=0, (1)
du
pa+pu-?u=?-1"—'ﬁ'p, (2)

where, u, p and p are the velocity, pressure and density of fluid, respectively. Here,

the extra stress tensor T is defined as
T = 2ud. (3)

Correspondingly, the rate of deformation d for general flows is expressed as,
1
d= E(‘Fu—I— vul), (4)

where T is the tensor transpose. In addition, the momentum equation (2) can also be

expressed in the non-dimensional form as

du

R
ot

+ Reu-Vu=V-(20d)— Vp. (5)
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Here, Re =p% is a Reynolds number, which is defined based on velocity (U7},

length (L) and density (). Moreover, () is provided as the viscosity of fluid (for
more details see [14]-[17]).

Our study aims to introduce a study in incompressible lamnar axisymmetric flow;
thus, the system of non-dimensional differential equations for incompressible flow

with absent forces can be expressed in cylindrical coordinates as:
Continuity equation

du, 1  1du, au,

T+—u,+——+—=0. (6)
T r da dz

Momentum equation
du, _ _1dp f _,
ot + @ Vu, = Re dr + Re (V5u.), (7)
dug 1dp F .,
., TR = — — [V~ R 2
ap T @ Vug = ————p+ o (Viug) (8)
du_ 1Lap f ,_,
— 4+ (- Vju,=———+—(Vu_). 9
ap T (@ Vuy=———+ - (Vu,) (9)

Where, u,., 15 and . are the velocity components in r-direction, &-direction and z-

direction, respectively.

3. Numerical method

In this study a TS5 —TG/PC— FEM is utilized to treat the system of current

differential equations. In this situation, the two-step Lax-Wendroff method is used to
achieve second-order accuracy in both time and space. To explain the derivative of

such method, consider a one-dimensional problem of the form:

Z—i"’ = G(w), (10)
and using

u_06_0Gou_dG an
dt¢ dt dudt du

a second-order Taylor expansion of u around t™ results in the following expression
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ntl " +m(au)n+ L At)? 0*u”
u =u - - .
ot 2( ) dt?
"=yt +ALGT + 1(&::)9 (SG)HG” (12)
u u 2 du !

where, the superscript 7 denotes the time level. To obviate the explicit evaluation of

the first derivative z—f a two-step Lax-Wendroff scheme is utilized to gain an O(At?).

Therefore, the two-step Lax-Wendroff procedure over split time-step t € [t*, t""3]
and t € [t",t"*1]is
nts At
stepl: u 2 =1u" +EGH’ (130)
+1
step2: Tl =" + AtGT 2. (13b)
In these equations, terms with = indicate evaluation at a specific time step.

For non-dimensional incompressible Newtonian fluid equation (5) is written as:

2 [ d) - pl (19)
dt Re

where L(u,d) = V- (2fd) — Re u- Vu. Then the fractional-staged formulations with

non-dimensional parameters within each time-step may be given by:

2Re[ .1

stagela: — |u 2 —u™| = L(u", —-Vp", a

tagel ar[ 2 ] L(u",d™) — Vp" (15a)

Re 1 1

stagelb: o [u* —u"] =1L (un+2,d”+2) —Vp", (15b)
. Re

stage2: P2 (p™tt —p™) = EF’ u®, (15¢)

BAL
stage 3:u™l —ut = —E[F(p’”l —p™)] (15d)

The summary of this method, the algorithm consists of three stages over each time

[t..t.+1]; In the first stage contain two sub-stages. In the start , at stage 1a, can
computed a velocity component at half time step (n +§] by using the data raised at
time n. At stage 1b, a velocity component ©* is computed from data that is found in
stage la. At stage 2, the pressure difference over the time step is determined

depending on the value of u*, which is evaluated from step 1b. Finally, the value

velocity time n + 1 are calculated by using U*, and pressure difference (p™** — p™).
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For the finite element method, we introduce approximations u(x,t) and p(x, t) to the

velocity and pressure respectively over finite dimensional function spaces. Hence we

get;
Jy
) =) (06,0,
o (16)
POt = ) p, (O (.

Such that J,, and ], are the total number of nodes and the number of vertices only of
the triangles, respectively. Here, u;(t) and p;(t) represent the vector of nodal values
of velocity and pressure and ¢;(x),¥;(x) are their respective basis (shape or
interpolation) functions. Similar forms apply for w* and pressure difference. The
domain 1 is partitioned into triangular elements with velocities computed at the

vertex and mid side nodes, and pressure only at vertex nodes. For the shape functions,

¢;(x) are selected as quadratic basis functions and v (x) as linear basis functions.
The corresponding a TS — TG f/PC — FEM form of equations ((15a), (15b), (15¢) and

(15d)) may then be written in matrix form as (see [10]):

2R 1 1
stepe la: [ﬂ—:M +55] (UHE — U”) ={—[S+ Re N(IN]U + £T P}", (17a)

R 1 1
stepe 1b: Ll—:m' + 55] (U* —U™) = {—SU + £ P}* — Re[N(L)U]™"Z, (17b)

stepe 2: K(P™! — P™) = — 2% g+ (17¢)
gar
Re +1 +1
stepe 3: EM[U” — U =gfT (Pt —pm), (17d)

Consequently, the above matrices in an (r, 8, z) —coordinate system are defined as:

1. Mass Matrix,

M™T 0 0
M=o Mm% o |, (18)
0 0 M=
such that,
M =M% = M= =J. poTda. (19)
ﬂE
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2. Convective Matrix,

cC D, 0O
N=|D, C 0

0 0
where,

€ g )] = [

ﬂE

ar

.
(c;b:;b* . 097 +- qbc;b*ug
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opt i
—g tooTu.

¢T

1 1
[D, (up)] = — j L b0 tugstdn, (D, ()] = j ZpoTugetdn.
ﬂeT' ﬂeT'

3. Momentum Diffusion Matrix,

g ré g
5‘ — 59?" 599 593 .

zZr Szﬂ g==
where,

—_— —_— J—

5’"’“—J. dpdpT 1 3papt
B ar dr r2d8 98

+
srﬂz(sﬂrj'l'zf (iﬂqbai_ia_qbgb +
n e

a6 de

Sgg_f (aqbang 1d¢ 2 dpdpT

dr dr ror ri gg

1dgp dgt
56 = (5%¢ T=f ————|dn,
( ) nf L’ dz o8

de

1d¢ dpT
———1dn,
r df dr )

dpdpt 1 dpdpt dgp 0t
SHZJ lﬁi+_“_¢i+ ¢9¢

nf dr or re df dg dz dz

4. divergence/pressure gradient matrix,
£=[£.,454..]

:
f?,:J. [ ai+ wqu]dﬂ £y = f
n®

5. A pressure stiffness matrix

(e This article is an open access article distributed under
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1 dgt
i r ' ar dz dz

2———|d.

¢,T

dz

29 04

+
2 )an,

2 )an.

.
w2 ane, —f w22 an.

(20)

(21)

(22)

(23)
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B oy ayt Yoyt
K—LE lg e +E P ]dn. (24)

Furthermore, quadratic shape functions of the velocity components in cylindrical

coordinates are used. These functions are given in the usual coordinates as:

ré 1 [L1—Lila+L3)] 1 0 0o -1 o —19[Ld

o Li—L,(L;+Ly)| |0 1 0 —1 -1 offL3

Pa| _|L3—L(L,+L)[_|0 0 1 0 —1 -—1{12 _ (25)
¢s| |aL,L, 000 4 0 O0fz,1,

¢s| |4L,L, 000 0 4+ 0fz,,

Lped lar L, /000 0 0 4+l

Obviously, the vector of interpolation functions can be expressed in the matrix form

as

¢ = [GI[E]. (26)
In contrast, for pressure, the following linear shape function is used:

Py Ly

W, | = |L,|. (27)
Y3 Lj

Here, the vector of linear shape function is symbolized by [R].

The three shape functions L,, L, and L 5 of the cylindrical coordinates are defined as:

1
L= 2 (a; + br +¢;z), (Vi = 1,2,3).

arec

Where A,,... is the area of the element’s triangular and a;, b;, and ¢; are coefficients.

Consequentially, by using the theory of area coordinates for triangular elements, the

mass matrix can be expressed as:

= [ potan=[ [ IGNENEG rdeda = 2 | [G1ENENG e

AE
where,
L zy +2; 1 23
r =————— = 7 =——"= =
m 3 m 3
[M] = 277, [G1[EN[ET][67] f da = 21, A, [GI[EIETI[GT]. (28)
Lot Sl | e LS Sl |

The integrate by using the exact integral formula of
a! bl c!

T (a+ b+ c+2)0

f LeI5L5dA = 2A
AE‘

Now, we can to find the derivative form of shape functions as follows:
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dg d[E]
— = [G]|—— = [G]|[F][R],
== (61—~ = [GI[B][R]
dg
— =0,
a8
dg d[E]
— = [G]—— = [G][C][R],
= = (61— = [G][C][A]
dy d[R]
_ = = T R
or dr (7]
dy d[R]
[ =[5 ,
dz dz [5]
where,
r2b;, 0 0 r2c; 0 0
0 2b, 0O 0 2c, 0
_ 1 0 0 2b, B 1 0 0 2cy
[B]_Eﬁlw” b, b, 0 | (€] 24l e 0
0 b, b, 0 Cq €3
Lby 0 b, | cz 0 €1
by €1
1 b. 1 €,
T = =1.15] =
[ ] zﬂﬂrsrz ba [ ] Zﬂﬂrsrz 3

Also, the final diffusion matrix formula can be written as:

S™ = 4w, Agreo [G1IB][RI[RT][BT][GT] + i—ﬂflmﬂ [G[E][ET][GT]

+2m7, Ao [GICT[RI[RTI[CTI[GT], (29)
"F = 2mr, AL, [GI[BI[RI[RT][CTI[GT], (30)
5% = 2mr,, A,,..[G1[BI[RI[RT1[BT][GT] — 2mA,,..[G]1[BI[RI[ET][G ]
477 Ao [GIENETIIGT] ~ 2y, [G1EVRTIIBTI(G ]
+2mr, A, [GIICT[RI[RTI[CTI[GT], (31)
sﬂzz (Szﬂj'l'zsrﬂz (sﬂr:]'rz 0, (32:]
S = 211, A, [G1[CI[RI[RT][BT][67], (33)

5% =2mr, A_ . [G1[BI[RI[RTI[BT][GT] + 4mr, A

m-rarea

GI[CI[RIRT][CTI[GT].(34)

arega [
Moreover, the element of convective matrix is defined as
[Clupugu)] = [Co(u,)]+ [Colug)] + [Co(u)],
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[C-(u,)] = 277, Ay [G[EI[ETT[G 7] [, ][RT][BT][GT], (35)
[C-(u.)] = 277, Ao [G][E[ETT[G 7] [ J[RTI[CTIGTY, (36)
[D;(ug)] = —2mA,,. [G1[E][ET[6 ] [ug] [ETTIGTY, (37)
[D,(ug)] = 2mA,, .. [G1[EIET][G ] [ue] [ET][GT], (38)
[Co(ug)]=0.

Also, the divergence/pressure gradient matrix is defined as:

£, = 2mr,Ag,., [RI[RTI[BTI[GT] + 2mA,, ., [RI[ET][GT], (39)
'EE = DJ"EH = EHTmAE?‘EIE [R] [RT] [CT] [GT]' [40}

Finally, the pressure stiffness matrix is given by
[K] = 207 A oo [T1ITT] + 2707, Ay oo [S1S ] (41)

m”Tarea

4. Problem specifications and boundary conditions

Poiseuille flow through a two-dimensional axisymmetric straight channel was
introduced in this study under isothermal conditions. Symmetry of the flow centerline
is taken, permitting solutions to be sought over the upper, where the radial velocity at
the centerline vanishes. For this purpose, three different triangular finite element

meshes are implemented: a cross mesh of (2 x 4) elements, medium mesh of
(5 % 10) elements, and fine mesh of (10 x 20) elements with the same length, as

shown in Fig.1 (Typical finite element mesh characteristics are included in Table 1).

Boundary conditions (BCs): The setting of BC, of the present channel problem is

laid as follows:
(a) Poiseuille (Ps) flow is specified at the inlet with zero radial velocity .

(b) No-slip ECs were applied to the top and bottom walls of the channels.

(b) Zero radial velocity is applied and zero pressure is applied to the
outlet of the channels.

(e This article is an open access article distributed under 207
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Table 1: Mesh characteristic parameters

Mesh Total Element | Total Nodes|Boundary Nodes | Pressure Nodes
Cross mesh (M1) 8 25 16 9
Medium mesh (M2) 50 121 40 36
Fine mesh (M3) 200 441 80 121

(e This article is an open access article distributed under 208
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(@) Cross mesh M1: (2 x 4) elements

(b) Medium mesh M2: (5 X 10) elements

(c) fine mesh M3: (10 x 20) elements

Figure 1: mesh pattern
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5. Numerical results

The numerical results are computed for Newtonian flow through an axisymmetric straight
channel by taking a circular cross section of the pipe. In this representation, three different
triangular finite element meshes were used to present the numerical analysis results under

different mesh convergence levels. The results are shown for R = 1, Crank-Nicolson parameter
8 = 0.5, tolerance criteria taken here as 10™** and typical At is @(10™%). The critical of (Re)
are evaluated for three meshes and  varying between @ and 2. In addition, the results concerned
also with the rate of error convergence of the problem components under Re-variation. The exact

solution for the problem under consideration with specific conditions has introduced to compare
with the numerical results in velocity at the in fully developed flow area.

Exact solution: For fully developed shear axisymmetric fluids through a circular channel, the
solution in velocity can be computed analytically under specific conditions. In this case, for the

axis of symmetry + = 0 and top wall » = R, we have the dimensional velocity solution in the

form
T.E
= 1——1, 42
Uz (uzjmﬂx ( Rg) ( :]

where, R is the radial of the channel and (u.),... IS the maximum velocity in the fully

developed flow area, which is defined as [17]

_ R*Ap

(usj max ’ ( 4 3)

4pl
such that, Ap = p, — p,, Where p; and p, are the pressures at the outlet and inlet of the pipe,
respectively, and ! is its length.

In our study, to compare the numerical results with the exact solution for fully developed

velocity the simulation was implemented for R = 1 with applying same conditions. The profile
of the analytical and numerical axial velocities in the fully developed flow (zone z=1) is
presented in Figure 2. The numerical result is provided for fine mesh, Re =1 and i = 1, under

imposing axial velocity corresponding to analytical expressions for fully-developed (42), with

(1. )mae St to 2. Findings show that, the obtained numerical results are given a perfect
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agreement with available analytical solutions, which reflects the sufficiently of the
TS —TG/PC— FEM (see Figure 2).

1
- = = = = = Analytic solution
0.8 [ ——— Numerical solution |
0.6 F
- |
0.4
0.2F
| o.'s 1
= S

I | PRI TS BRI BT R
002 04 06 08 1 12 14 16 18 2
Figure 2: Cross-channel axial velocity profiles: fine mesh, Re =1, u =1

In Figure 3, field plots are presented for the velocity and pressure for the fine mesh. As to
be anticipated, a maximum level of velocity is displayed along the center line of the channel (2

units), and then decreases gradually by going to the above. Also, the level of pressure rise at the

inlet of the tube reduces whenever closer to the outlet of the tube with a maximum around 16

units.
Velocity field Pressure field
—_— |
Uz 01030507091.11.3151.71.9 P 10 26 41 57 71 8.3 10311.9134 150

Fig. 3: Velocity and pressure fields: fine mesh, Re = 1,u =1
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The channel pressure distribution along the axis of symmetry for the cross mesh and fine

mesh with fixed Re = 1 and i = 1 is provided in Figure 4a. For the two meshes, a linear decline

in pressure occurs throughout the center of the channel, after which the pressure reaches zero at

the outlet of the channel. From this data, the pressure level is rise from 8 units with a cross mesh
to around 15 units for fine mesh (almost double) at the inlet of the channel, and continuity with

the same feature until they arrived to finish point. In addition, the pressure drop is plotted in
Figure 4b for the fine mesh with Re = {10,50,65}. The profiles displayed that there is an

insignificant effect of Re-variation on the pressure distribution over the channel, in spite of a

slight change in the zone of 0 < Z << 0.2 (as shown in the zoom section). The same situation

appeared for cross and medium meshes (not shown).

16 . 16—
uf : HEN :
[ fine mesh b AR / — Re=I0 ]
2r cross mesh b 121 ————— Re=30 .
[ ] ; ———— Re=63 ]
- J 10 —
10 15 ]
. 3k h = sf 3
o 8 [ 143 ]
6L ]
6 ] U ]
< J 3 01 0.1 0.3 ]
2k L 3
2f . ]
- U-nn | i I i R B | PRI BT IR | i
b b b b e 1 LT 0 02 04 06 08 1 12 14 l6 1.8 2
0.2 04 06 08 1 12 14 16 18 2 i
z
(a) (b)

Fig. 4. Pressure drop profiles on axis of symmetry: (a) cross mesh vs fine mesh,
Re = 1,u = 1 (b) Re-variation, fine meshand & = 1

The critical Reynolds number (Re.,.;) for the three meshes is illustrated in Table 2 under three
levels of (u._),... = {1,1.5,2},which applies for inlet flow. Here, an explicit comparison in

Re . where the results show that the critical level was that of Re_.. ~ 0(460),

criy
Re_..~ 0(240) and Re_,, ~ 0(65) for cross, medium, and fine meshes, respectively. The

results reflect the effect of the size of the element on the level of Reynolds number. In addition,

the critical Reynolds number (Re,,;) for different settings of (). IS given in Table 3. From

(e This article is an open access article distributed under 212
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the results, one can conclude that the level of Re_,.; is noticeably affected by the inlet boundary

maximum axial velocity, where decreases (). l€ads to a larger level of Re_,.,.

Table 2: Critical Reynolds number (Re_,;) for three different meshes with g = 1.

Mesh Critical Re (Re,,;)
Cross mesh (M1) 460
Medium mesh (M2) 240
fine mesh (M3) 65

Table 3: Critical Reynolds number (Re.,.;) for different level of axial inlet

velocities; cross mesh

(uzjmﬂx Critical Re (Recr‘z’)
1 460
15 300
1.6 285
1.7 160
1.8 240
2 220

To see the influence of (u_),,.. that applied at the inlet of the tube on the level of the
critical Re, Figure 5a demonstrates critical Re profile as a function of viscosity 0 << u < 2. Here,
the critical level of Re is observed to decrease as the viscosity raises such that the maximum of

Re_.. corresponds to the smallest viscosity, p = 0.001, which is consistent with the natural of

the characteristic non-dimensional equation of Reynolds number (Re = £

i
}. Moreover, one can
1]

observe that the level of critical Re is increased as the (u.),,... decreases, which reflect the fact

of the effect of boundary inlet velocity on the critical.
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Fig. 5: Critical Reynolds number (Re.,.;} vs. viscosity.

Figure 6 shows the level of pressure distribution along the axis of symmetry for rising
(12 )mas. FOr various (u;),..., a rapid linear decline in pressure happens during the channel,
after which the pressure value reaches sharply to zero at the end of the channel. For more

illustration of the behaviour of flow, the profiles also provided that the maximum axial velocity
at the entry of the channel needs a high level of pressure to achieve a fully developed situation.

18

0:...|...|...|...|...|...|...|...|...
0 02 04 06 08 1 1.2 14 16 18 2

Figure 6: Pressure profile, cross mesh, (), -variation, u =1, Re = 1
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Geometry characteristic effect: to interrogate the influence of the channel length on the level
pressure drop, the simulation was conducted using four different fine triangular finite element
meshes, M3, M4, M5, and M6 with height h = 1 and various lengths L = 2,L = 3,L = 4, and

L = 5, respectively, as shown in Figure 7.

M4

n

o | =3h -

(M5)

» L=4h =

(M6)

= L=5h -

Figure 7: Finite element mesh, (M3) L=2, (M4) L=3, (M5) L=4, (M6) L=5.
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Pressure drop: In Figure 8, field plots are presented for pressure with L = {3,4,5} and fixed
Re = 1. As to be anticipated, a maximum level of pressure is displayed at the inlet of the

channel, and then decreases gradually by going to the cone exit. The fields show that there is a
significant effect of the channel length on the level of pressure, and the level of pressure rise as

increase L to reach the high level with maximum around 40 units with L = 5.

22.0
=3 20.4

18.9
17.3
15.7
14.1
~ 12.6
Max=32 11.0

9.4

7.9
L=4 6.3
4.7
3.1
1.6
0.0

Max=24

Max=40

L=5

Fig. 8: Pressure fields, L-variation, Re = 1.

In addition, pressure drop is plotted in Figure 9 with L variation and Re = 1, along the

axis of symmetry. The profiles displayed that there is a significant effect of L-variation on the
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pressure distribution over the channel. In this context, the level of pressure drop is raised as L

increased, reaching a peak of 40 with L = 5.
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Fig. 9: Pressure drop profiles on the axis of symmetry; L-variation, Re = 1

(=}

Pressure coefficient (C,,): other finding of our investigation is the pressure coefficient (C,),

which is defined as:

P11~ By
C?J = ﬁ (44]
i

Where, p, is the pressure at the channel inlet, p, is the pressure at the channel outlet, g is the
density, and U is the average velocity. Here, the pressure coefficient is studied for different
setting of Re and channel length L. Consequently, Figure 10 illustrated the C,, as a function of Re
with L = {2, 3,4, 5}. The results reveal that, the level of C,, is increased as the length of channel

raised as expected, while notable reducing is occurred as Re increases, which is consistent with

the results reported by Garrioch and James [18]. Due to the inertial effects dominated, one can

observe that at high Re, the C,, curves tend to the lower limit, reaching to around 1 unit.
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Fig. 10: Pressure drop coefficient for L-variation.

6. Conclusions
In this study, the numerical simulation for laminna incompressible Newtonian fluid is
achieved based on is the Taylor-Galerkin pressure correction method in a Cylindrical coordinate

system. With the selected set of parameters, we commenced with a Reynolds number (Re) and
viscosity (z). In addition, the influence of the inlet boundary condition on the behavior of

axisymmetric incompressible Newtonian flow was studied as well. The exact solution for the
problem under consideration with specific conditions was introduced to compare with the
numerical results in velocity at the in fully developed flow area. In this matter, an excellent

accuracy of the solution appears compared with the exact solution. The critical level of Re

number is investigated for three types of meshes, where we found that the maximum level

appears with a cross mesh; this reaches around 460. In contrast, the impact of viscosity variation
on the critical level of Re number is also studied. In this situation, and as it is anticipated, we

found that a high level of Re number has occurred with a low level of viscosity. In addition, the
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effect of the boundary maximum axial velocity (u.),... at the inlet of channel on the level of
density and Re number is investigated under g-variation. In this status, we dedected that there is
a significant effect of (. ),.... upon the level of Re number and density, such that was generally
found that decreasing (. ),... iNCreases Re number and density. In the case of Re number, one
can see that the maximum Re was around 576 with (u_),,... = 1 and & = 0.1 units, while with
the same value of (u_),... the density level reaches around 865 units with g =2 units.
Ultimately, the effect of channel length on the pressure drop and coefficient (C,) is presented as

well. In this context, considerable impact is observed for varying of the channel length on the

both pressure drop and pressure coefficient.
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