

New Schiff Base Compounds with Benzene Moiety: FT-IR, ¹H and ¹³C NMR Spectroscopy (1D) Studies

Omar S. Khalefa, AbdulKarim-Talaq Mohammad*

Chemistry Department, College of Science, University of Anbar, Ramadi, Iraq

*Corresponding Authors: E-mail:drmohamadtalaq@gmail.com

Doi 10.29072/basjs.20200107

Abstract

New Schiff bases compounds containing benzene moiety has been synthesized from	Article inf.
reaction between (4-(((4-(Alkyloxy) benzylidene) amino) methyl) phenyl)methan	Received:
amine and 4-((6-bromohexyl) oxy)benzaldehyde or 4-(4-bromobutoxy)benzaldehyde.	28/3/2020
FT-IR of these compounds have been studied. The complete ¹ H and ¹³ C NMR	Accepted
assignment of these compounds has been obtained using one-dimensional NMR	24/4/2020
techniques including ¹ H and ¹³ C experiments. The data deduced from this study show	Published
that the alkyl chain and the phenyl rings are in different planes compared to the	30/4/2020
benzene ring.	Keywords:

Schiff bases, Benzene, FT-IR, 1D NMR

98

1. Introduction

Schiff base (CH=N), is used as a linking group in connecting the rigid core groups. (4-(((4-((Alkyloxy) benzylidene) amino) methyl) phenyl) methane amine and 4-(4-bromobutoxy)benzaldehyde or 4-((6-bromohexyl) oxy) benzaldehyde compounds are capable to form Schiff bases. Though it provides a stepped core structure, yet it retains molecular linearity, hence providing higher stability and enabling the formation of mesophase [1]. On the other hand, the terminal alkoxye chain length plays important roles in the formation, type, thermal stability, and temperature range of the mesophase of the liquid crystalline compounds [2].

2. Experimental

2.1 Materials

Compounds **6aza-14aza** and **6aza'-14aza'**, (Figure 1), were prepared according to the method described by (Majumdar et al.,) [3]. An equimolar amounts of (4-(((4-(Alkyloxy) benzylidene) amino) methyl) phenyl)methan amine with the 4-((6-bromohexyl) oxy) benzaldehyde or 4-(4-bromobutoxy)benzaldehyde., both dissolved in absolute ethanol was refluxed in the presence of a catalytic amount of acetic acid glacial for **3h**, the mixture let to cool at room temperature, the precipitate was filtered then washed with hot ethanol, and let to dry, and finally recrystallized with ethanol.

2.2 Physical Measurements

FT-IR spectra of the intermediate and title compounds were recorded using (FT-IR) 8400s fourier transitions infrared spectrometer Shimadzu, Japan, in the frequency range (4000-400) cm-1 in the form of (KBr) disc. The NMR spectra were recorded in deuterated methyl sulphoxide (DMSO-d6, at 298 K on a Bruker 400MHz Ultrashied FT-NMR spectrometer equipped with a 5mm BBI inverse gradient probe. Chemical shifts were referenced to internal tetramethylsilane)TMS). The concentration of solute molecules was 50 mg in 1.0 mL of (DMSO-d6).

3. Result and Discussion

The data of the FT-IR spectra for compounds 6aza-14aza and 6aza'-14aza' are listed in respective Tables 1 and 2. The FT-IR spectra of compounds 14aza and 14aza' are shown in Figure 2. The aromatic C-H stretching vibrations split into two bands at 3061-3045 cm⁻¹ and

3034-3018 cm⁻¹ [4]. The aliphatic C-H alkanes stretching vibrations normally are appear in the region of 2925-2920 cm⁻¹ and 2852 -2849 cm⁻¹ [5]. In addition, the C=N group two bands was observed at the frequency 1651 cm⁻¹ and 1637 cm⁻¹ [6]. The aromatic C=C stretching vibrations are expected within the region 1605-1552 cm⁻¹ and 1513-1471 cm⁻¹ [7]. Ethers group (C-O) bands are usually observed in the region 1266-1253 cm⁻¹ [8].

v max (cm ⁻¹)											
Atom	6aza	7aza	8aza	9aza	10aza	11aza	12aza	13aza	14aza		
C-H	3061.48,	3060.37,	3061.19,	3062.01,	3061.49,	3062.34,	3061.15,	306122,	3061.18,		
aromatic	3024.13	3025.28	3024.16	3024.20	3026.19	3024.25	3024.18	3024.19	3024.18		
C-H	2924.01,	2922.67,	2921.23,	2923.65,	2923.46,	2920.03,	2921.14,	2920.45,	2920.03,		
aliphatic	2851.67	2850.34	2852.48	2852.28	2849.05	2850.31	2852.52	2850.35	2852.52		
C=N	1631.87	1632.49	1630.29	1631.45	1632.46	1629.34	1631.26	1630.23	1631.67		
C=C	1604.08-	1604.28-	1603.89-	1604.62-	1604.89-	1605.27-	1604.38-	1604.45-	1604.66-		
aromatic	1575.65,	1576.32,	1576.34,	1575.69,	1574.35,	1574.28,	1576.23,	1576.24,	1575.73,		
	1510.14-	1510.26-	1511.37-	1511.58-	1511.37-	1510.17-	1510.36-	1511.34-	1512.09-		
	1471.61	1471.79	1471.41	1471.78	1471.93	1470.34	1471.35	1470.43	1471.59		
C-0	1255.79	1254.49	1253.57	1255.34	1253.47	1255.49	1254.68	1255.89	1255.57		
p-											
position	833.15	835.56	833.67	834.89	835.09	834.38	835.73	835.49	835.12		

Table 1: FT-IR of compounds 6aza-14aza
--

100

υ max (cm ⁻¹)										
Atom	6aza'	7aza'	8aza'	9aza'	10aza'	11aza'	12aza'	13aza'	14aza'	
C-H	3061.29,	3061.34,	3060.12,	3062.41,	3060.24,	3061.45,	3060.78,	3060.37,	3062.12,	
aromatic	3024.38	3024.39	3024.12	3024.20	3024.59	3024.36	3023.89	3024.22	3024.18	
C-H	2922.67,	2920.82,	2923.09,	2921.39,	2923.57,	2922.46,	2921.03,	2920.76,	2920.03,	
aliphatic	2853.14	2850.15	2850.12	2852.26	2850.19	2851.47	2850.57	2851.34	2850.59	
C=N	1650.18	1648.75	1649.27	1648.54	1651.78	1650.23	1649.89	1648.96	1649.02	
C=C	1603.38-	1602.74-	1603.36-	1602.65-	1603.56-	1603.43-	1601.34-	1602.69-	1602.74-	
aromatic	1578.39,	1577.35,	1576.39,	1577.59,	1578.46,	1576.38,	1575.35,	1576.34,	1577.66,	
	1513.27-	1510.27-	1511.49-	1512.81-	1511.12-	1511.48-	1511.48-	1510.65-	1512.09-	
	1469.87	1468.46	1470.39	1470.36	1470.17	1468.37	1469.35	1470.45	1469.66	
C-0	1256.75	1257.32	1256.45	1257.68	1258.45	1257.19	1255.35	1256.89	1257.50	
p- position	834.96	833.69	835.85	834.78	833.53	834.86	835.19	834.94	835.45	

Table 2: FT-IR of compounds 6aza'-14aza'

The data of the ¹H-NMR chemical shifts for title compounds 6aza-14aza and 6aza'-14aza' in DMSO solution are listed in respective Tables 3 and 4. The ¹H-NMR spectra for compounds 12aza and 14aza' are shown in Figure 3. The singlet signal at $\delta = 8.45-8.35$ ppm was attributed to the imine group protons (CH=N) [9]. Resonances of the aromatic protons (H6, H7 and H8, H9) were observed as doublet within the chemical shifts range $\delta = 7.89-7.82$ ppm and $\delta = 7.76-7.72$ ppm respectively. The doublet signals at $\delta = 7.72-7.67$ ppm and $\delta = 7.44-7.36$ ppm were ascribed to the phenyl protons (H22, H23 and H14, H15) [10, 11]. While the doublet at $\delta = 7.24-7.21$ ppm was assigned to the aromatic protons (H16, H17) [11]. Also spectra are show doublet signal at $\delta = 6.92-6.87$ ppm, were assigned for aromatic protons (H24, H25) [10]. A signal attributable to the presence of methylene protons for the NCH₂ group was observed at chemical shifts range $\delta = 4.80-4.70$ [12]. The triplet at the chemical shifts $\delta = 4.20-4.09$ ppm and $\delta = 4.07-4.00$ ppm were indicated successful methylene group protons of the OCH₂ [13]. The protons residing in the alkyl chain ((CH₂)_n) in all compounds 12aza and 14aza' chain can be substantiated by multiples at the range of $\delta = 2.46-1.09$ ppm. Moreover, a signal which appears as triplet at the chemical shifts $\delta = 0.88-0.80$ ppm can be assigned to the terminal methyl (CH₃) [14, 15].

6aza-14aza

$R = C_6 H_{13} - C_{14} H_{29}$

6aza'-14aza'

 $R = C_6 H_{13} - C_{14} H_{29}$

Figure 1: Molecular structure with numbering scheme for compounds 6aza-14aza and 6aza'-14aza'

Chemical shift (ppm)										
Atom	6aza	7aza	8aza	9aza	10aza	11aza	12aza	13aza	14aza	
CH ₂ -O	4.10	4.09	4.13	4.11	4.10	4.09	4.11	4.11	4.10	
CH ₂ -N	4.68	4.71	4.69	4.70	4.70	4.71	4.70	4.70	4.71	
H6, H7	7.84	7.85	7.86	7.83	7.87	7.84	7.85	7.84	7.87	
H8, H9	7.73	7.78	7.77	7.75	7.76	7.74	7.76	7.74	7.75	
CH=N	8.40	8.39	8.41	8.40	8.43	8.42	8.44	8.42	8.43	
H14, H15	7.39	7.42	7.41	7.43	7.42	7.44	7.40	7.42	7.41	
H16, H17	7.20	7.19	7.22	7.23	7.21	7.20	7.22	7.21	7.23	
H22, H23	7.70	7.71	7.73	7.70	7.74	7.72	7.73	7.71	7.71	
H24, H25	6.98	6.99	6.93	6.94	6.93	6.95	6.93	6.91	6.90	
$(CH_2)_n$	2.55-	2.45-	2.46-	2.47-	2.45-	2.46-	2.47-	2.44-	2.45-	
	1.13	1.09	1.12	1.12	1.12	1.07	1.10	1.15	1.10	
CH ₃	0.89	0.87	0.91	0.84	0.85	0.86	0.87	0.85	0.86	

Table 3: ¹H-NMR chemical shifts (ppm) of compounds 6aza–14aza

Chemical shift (ppm)										
Atom	6aza'	7aza'	8aza'	9aza'	10aza'	11aza'	12aza'	13aza'	14aza'	
CH ₂ -O	4.11	4.09	4.15	4.10	4.10	4.09	4.11	4.12	4.10	
CH ₂ -N	4.69	4.73	4.68	4.71	4.70	4.71	4.70	4.69	4.71	
H8, H9	7.86	7.84	7.88	7.87	7.85	7.83	7.85	7.85	7.86	
H10, H11	7.75	7.79	7.73	7.77	7.76	7.72	7.76	7.75	7.76	
CH=N	8.39	8.38	8.42	8.44	8.45	8.43	8.41	8.41	8.40	
H16, H17	7.41	7.44	7.39	7.40	7.45	7.43	7.41	7.40	7.43	
H18, H19	7.26	7.18	7.21	7.25	7.24	7.21	7.22	7.20	7.22	
H24, H25	7.67	7.68	7.72	7.71	7.73	7.69	7.70	7.72	7.70	
H26, H27	6.99	6.97	6.93	6.90	6.91	6.92	6.93	6.90	6.89	
$(CH_2)_n$	2.09-	2.11-	2.13-	2.39-	2.14-	2.21-	2.11-	2.19-	2.10-	
	1.18	1.27	1.25	1.24	1.18	1.20	1.25	1.21	1.25	
CH ₃	0.84	0.86	0.93	0.89	0.88	0.82	0.87	0.83	0.86	

Table 4: ¹H-NMR chemical shifts (ppm) of compounds 6aza'-14aza'

The data of the ¹³C-NMR chemical shifts for title compounds 6aza-14aza and 6aza'-14aza' in DMSO solution are listed in respective Tables 5 and 6. The ¹³C-NMR spectra for compounds 12aza and 14aza' are shown in Figure 4. The peak of the imine group CH=N was assigned at $\delta = 166.57 \cdot 163.38$ ppm [14, 16]. The signals within the range of $\delta = 154.13 \cdot 109.93$ ppm were assigned to the aromatic carbons in the phenyl rings [17, 13]. The OCH₂ group appears in the region of $\delta = 69.31 \cdot 67.92$, and $\delta = 66.27 \cdot 64.73$ ppm [18]. Similarly, the ¹³C-NMR signals for NCH₂ were found at $\delta = 52.13 \cdot 49.58$ ppm and $\delta = 46.87 \cdot 41.35$ ppm [14, 19]. The peaks at $\delta = 32.67 \cdot 21.66$ ppm were attributed to the methylene carbons of the long alkyl chains, while the peak at the chemical shift $\delta = 15.96 \cdot 14.58$ ppm could be assigned to the terminal methyl carbon of the alkyl chains [20].

Chemical shift (ppm)										
Atom	6aza	7aza	8aza	9aza	10aza	11aza	12aza	13aza	14aza	
C=N	165.81	165.76	166.01	164.45	165.16	163.35	164.19	163.67	165.21	
C-0	69.35,	68.94,	69.55,	67.32,	69.72,	68.24,	68.33,	67.79,	68.89,	
	64.32	64.78	63.78	65.18	64.67	64.89	65.14	66.35	66.10	
C-N	51.26,	51.56,	51.34,	51.33,	50.33,	52.01,	50.16,	52.34,	51.23,	
	41.76	42.45	42.67	41.79	42.11	41.22	42.49	41.45	40.89	
C5,C6,C7,C8,C9,C10,C13,C14,C15,C16,	135.98-	135.32-	134.29-	135.89-	135.78-	136.03-	134.89-	135.67-	133.89-	
C17,C18,C21,C22,C23,C24,C25,C26	115.29	114.24	115.56	114.98	112.75	116.24	115.92	114.89	115.12	
(CH ₂) _n	31.67-	32.13-	30.98-	30.56-	30.24-	30.08-	31.84-	32.09-	30.12-	
	21.59	21.67	21.89	22.46	20.67	23.39	22.23	23.12	21.34	
CH ₃	15.79	14.97	15.43	15.89	13.89	16.02	15.22	15.68	14.89	

Table 5: ¹³ C-NMR chemical shifts ()	ppm) of compounds 6aza-14aza
---	------------------------------

Table 6: ¹³C-NMR chemical shifts (ppm) of compounds 6aza'-14aza'

Chemical shift (ppm)										
Atom	6aza'	7aza'	8aza'	9aza'	10aza'	11aza'	12aza'	13aza'	14aza'	
C=N	165.49	164.22	164.35	165.89	163.98	164.65	166.01	164.99	165.87	
C-O	67.34,	69.31,	67.33,	68.29,	67.34,	69.35,	68.95,	68.73,	68.23,	
	64.76	64.28	64.25	65.36	65.37	65.28	65.77	63.28	64.52	
C-N	45.29,	46.22,	45.78,	44.34,	44.34,	44.98,	44.89,	45.33,	45.21,	
	51.46	53.29	51.39	51.68	51.97	51.78	53.67	51.34	52.78	
C5,C6,C7,C8,C9,C10,C13,C14,C15,C16,	134.67-	136.27-	135.39-	134.19-	136.12-	135.21-	134.11-	133.45-	133.81-	
C17,C18,C21,C22,C23,C24,C25,C26	114.38	115.35	113.56	114.89	115.33	114.23	115.32	115.28	115.41	
$(CH_2)_n$	32.56-	31.48-	32.97-	31.61-	31.56-	31.89-	31.74-	31.34-	32.72-	
	22.68	22.56	20.34	22.95	23.04	20.89	23.63	21.38	22.83	
CH ₃	15.22	14.37	115.37	14.68	15.78	15.67	14.47	15.29	14.93	

Figure 2: (a) FT-IR spectrum of compound 14aza. (b) FT-IR spectrum of compound 14aza'.

Figure 3: (c) ¹H-NMR spectrum of compound 12aza. (d) ¹H-NMR spectrum of compound 14aza'.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

105

Figure 4: (e) ¹³C-NMR spectrum of compound 12aza. (f) ¹³C-NMR spectrum of compound 14aza'.

References

- [1] R. Rajavel, M. S. Vadivu, C. Anitha, Synthesis, physical characterization and biological activity of some Schiff base complexes, *J. Chem.* 5 (2008) 620-626.
- [2] J. S. Dave and M. Menon, Azomesogens with a heterocyclic moiety, *Bull. Mater. Sci.* 23 (2000) 237-238.
- [3] K. C. Majumdar, S. Mondal, N. Pal, R. K. Sinha, Synthesis and mesomorphic behaviour of new mesogenic compounds possessing a cholesteryl ester moiety connected to a pyrimidine core, *Tetrahedron Lett.* 50 (2009) 1992-1995.
- [4] C. Alaşalvar, N. Öztürk, A. M. Alaa, H. Gökce, A. S. El-Azab, M. A. El-Gendy, Y. Sert, Molecular structure, Hirshfeld surface analysis, spectroscopic (FT-IR, Laser-Raman, UV– vis. and NMR), HOMO-LUMO and NBO investigations on N-(12-amino-9, 10-dihydro-9, 10-ethanoanthracen-11-yl)-4-methylbenzenesulfonamide, J. Mol. Struct. 1171 (2018) 696-705.
- [5] G. S. Kriz, G. M. Lampman and D. L. Pavia, Introduction to spectroscopy, WB Saun, 2001.
- [6] Z. Rezvani, B. Divband, A. R. Abbasi and K. Nejati, Liquid crystalline properties of copper
 (II) complexes derived from azo-containing salicylaldimine ligands, *Polyhedron*, 25 (2006) 1915-1920.
- [7] V. S. Madhavan, H. T. Varghese, S. Mathew, J. Vinsova, C. Y. Panicker, FT-IR, FT-Raman and DFT calculations of 4-chloro-2-(3, 4-dichlorophenylcarbamoyl) phenyl acetate, *Spectro.chim. Acta. A.* 72 (2009) 547-553.
- [8] P. Venkatesan, S. Thamotharan, A. Ilangovan, H. Liang, T. Sundius, Crystal structure, Hirshfeld surfaces and DFT computation of NLO active (2E)-2-(ethoxycarbonyl)-3-[(1methoxy-1-oxo-3-phenylpropan-2-yl) amino] prop-2-enoic acid, *Spectro.chim. Acta. A.* 153 (2016) 625-636.
- [9] L. H. Abdel-Rahman, A. M. Abu-Dief, M. Ismael, M. A. Mohamed, N. A. Hashem, Synthesis, structure elucidation, biological screening, molecular modeling and DNA binding of some Cu (II) chelates incorporating imines derived from amino acids, *J. Mol. Struct.* 1103 (2016) 232-244.
- [10] A. T. Mohammad, H. T. Srinivasa, S. Hariprasad, G. Y. Yeap, Enhanced liquid crystal properties in symmetric ethers containing the oxazepine core: synthesis and

characterization of seven member heterocyclic dimers, *Tetrahedron*, 72 (2016) 3948-3957.

- [11] G. Y. Yeap, F. Osman, C. T. Imrie, Non-symmetric chiral liquid crystal dimers. Preparation and characterisation of the (S)-(benzylidene-4'-substitutedaniline)-2 "methylbutyl-4"'-(4 ""-phenyloxy)-benzoateoxy) hexanoates, J. Mol. Struct. 1111 (2016) 118-125.
- [12] N. Bréfuel, I. Vang, S. Shova, F. Dahan, J. P. Costes, J. P. Tuchagues, FeII Spin crossover materials based on dissymmetrical N4 Schiff bases including 2-pyridyl and 2R-imidazol-4-yl rings: Synthesis, crystal structure and magnetic and Mössbauer properties, *Polyhedron*, 26 (2007) 1745-1757.
- [13] A. T. Mohammad, H. T. Srinivasa, H. M. Mohammed, S. Hariprasad, G. Y. Yeap, Synthesis mesomorphic and theoretical studies of some new unsymmetrical dimeric ethers of 6-amino-1, 3-dimethyluracil and biphenyl cores, J. Mol. Struct. 1117 (2016) 201-207.
- [14] R. Yerrasani, M. Karunakar, R. Dubey, A. K. Singh, R. Nandi, R. K. Singh and T. R. Rao, Synthesis, characterization and photophysical studies of rare earth metal complexes with a mesogenic Schiff-base. J. Mol. Liq. 216 (2016) 510-515.
- [15] X. Qiao, P. Sun, A. Wu, N. Sun, B. Dong and L. Zheng, Supramolecular Thermotropic Ionic Liquid Crystals Formed via Self-Assembled Zwitterionic Ionic Liquids, *Langmuir*, 35 (2018) 1598-1605.
- [16] A. A. Manesh, M. H. Zebarjadian, Synthesis of three new branched octadentate (N8) Schiff Base and competitive Lithium-7 NMR study of the stoichiometry and stability constant of Mn2+, Zn2+ and Cd2+ complexes in acetonitrile–[(BMIM)(PF6)] mixture, *J. Mol. Struct.* 1199 (2020) 126965.
- [17] M. S. Almutairi, K. Jayasheela, S. Periandy, A. R. Al-Ghamdi, S. Sebastian, S. Xavier, M. I. Attia, Structural, spectroscopic, Hirshfeld surface and charge distribution analysis of 3- (1H-imidazole-1-yl)-1-phenylpropan-1-ol complemented by molecular docking predictions: An integrated experimental and computational approach, *J. Mol. Struct.* 1196 (2019) 578-591.
- [18] Z. Biyiklioglu, A. Sofuoğlu, Synthesis and electropolymerization properties of [(4-{3-[3-(diethylamino) phenoxy] propoxy} phenyl) metoxy] and [(4-{3-[3-(diethylamino) phenoxy] propoxy} phenyl) metoxy] substituted silicon naphthalocyanines, *J. Mol. Struct.* 1148 (2017) 15-21.

- [19] K. Ramaiah, K. Srishailam, K. L. Reddy, B. V. Reddy, G. R. Rao, Synthesis, crystal and molecular structure, and characterization of 2-((2-aminopyridin-3-yl) methylene)-Nethylhydrazinecarbothioamide using spectroscopic (1H and 13C NMR, FT-IR, FT-Raman, UV–Vis) and DFT methods and evaluation of its anticancer activity, *J. Mol. Struct.* 1184 (2019) 405-417.
- [20] A. Velásquez-Silva, R. S. Forero, E. Sanabria, A. Pérez-Redondo, M. Maldonado, Hostguest inclusion systems of tetra (alkyl) resorcin [4] arenes with choline in DMSO: Dynamic NMR studies and X-ray structural characterization of the 1: 1 inclusion complex, *J. Mol. Struct.* 1198 (2019) 126846.

المستخلص

تم تصنيع مركبات قواعد شيف الجديدة التي تحتوي على جزء البنزين من التفاعل بين (4 - (((4- (ألكيلوكس) بنزيلايدين) أمينو) ميثيل) فينيل) ميثان أمين و 4 - ((6-برومو هكسيل) أوكسي) بنزالديهايد أو 4- (4-بروموبوتوكسي) بنزالدهايد. وقد تمت دراسة FT-IR لهذه المركبات. تم الحصول على التعيين الكامل H1 و 13 NMR لهذه المركبات باستخدام تقنيات NMR أحادية البعد بما في ذلك تجارب H1 و 13 C. تشير البيانات المستخلصة من هذه الدراسة إلى أن سلسلة الألكيل وحلقات فينيل في مستويات مختلفة مقارنة بحلقة البنزين.