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Abstract:

This paper is devoted to study the cohomology of the Orlik-Solomon
algebra A(A) as a free module for an £-generic r-arrangement A and a =
a; —a;, 1 <i<j << Inparticular, the dimension of H*(A(A), a) has been
determined forevery 1 <k <r —1.
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1. Introduction:

The first appearance of the study of hyperplane arrangements was by the researcher S.
Robert in (1889, [1]). He defined the arrangement A as a finite set of lines in the real plane
and the number of remaining areas of the plane after deleting those lines was calculated. By a
hyperplane H in a finite dimensional vector space V over a field K = R or C, we mean an
affine subspace of codimension one (that is dimH = dimV — 1) and by a hyperplane
arrangement A, (or for shorten (an arrangement)) is a finite collection of hyperplanes in V.
One of the most essential problems in the topological study in the field of arrangements is the
determination of the topological invariants of the complement of an arrangement, M(A) =
V\ Upey H, in terms of combinatorics, i.e. those invariants, that can be determined by using
the intersection lattice L(A) ={X S V|X = Nyeg H and B < A} only, which is partially
ordered by: X <Y & Y C X, that ordered the objects of L(A) opposite of inclusion. As a
best general reference here, we refer the reader to [2].

E. Fadell, R. Fox and L. Neuwirth, in (1962, [3] and [4]), studied the cohomological
group of the complement of an arrangement in complex space. Perhaps, the first non-trivial
result is due to Brieskorn, Orlik and Solomon who calculated the cohomology algebra of the
complement in terms of generators and relations (see [5] and [6]). Orlik and Solomon
theorem’s state that the cohomology algebra of the complement of a complex hyperplane
arrangement is isomorphic to an algebra (that named by their names and denoted by O-S
algebra) that is combinatorial determined, in line for [6].

This paper is interested with Hattori class of arrangements (1975, [7]) as a subclass of
the class of a hypersolvable arrangement which firstly introduced in (1998, [8]) and (2002,
[9]) by Jambu and Papadima as a generalization of Stanley class of arrangements (1972, [10]).
We emphasize that every hypersolvable arrangement A has a natural partition on the
hyperplanes of A, we call it a hypersolvable partition and denote it by HP due (2006, [11])..
As well as, a natural ordering was defined on the hyperplanes of A induced by a fixed HP, we
call it a hypersolvable ordering of A and denoted it by <. The advantage of giving any £ —
generic r —arrangement A, a fashion as a hypersolvable arrangement with HP II =
(T, ..., T,) and exponent vector w = (wy, ..., wp) = (1, -+, 1), lies in the fact that we can use
our knowledge about the structure of the O-S algebra A(A) as a free module with the NBC
monomial basis that related to the section of II.

A subarrangement C € A is called a circuit if it is a minimal dependent
subarrangement of A. If H is the smallest hyperplane in C via a total ordering < on the
hyperplanes of A, then € = C\{H} is called a broken circuit of a circuit C. By NBC base B of
A, we mean a subarrangement of <A which contains no broken circuit and such
subarrangements must be independent and denoted by k-NBC base if |B| = k. Let A be an
£ — generic r —arrangement and for 1 < k < r, NBC,(A) be the set of all k-NBC bases of
A, then;

INBC, (A)| = (!) and INBC.(A)| = (£) — (1) = ((2D). 111, 12].

This article is an open access article distributed under 2

the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).



http://creativecommons.org/licenses/by-nc/4.0/

Basrah Journal of Science Vol. 38 (1),1-25, 2020

Moreover, for any partition IT = (I1, ..., I1,) on the hyperplanes of an arrangement A,
we recall the definition of the partition Z-module to be (IT), = (I1;). ® ... ®(I1,),, where for
1<k < ¢, (Ily), is the free Z-module with basis 1 and the elements of IT, [2]. Similarly, we
recall a fashion of the Orlik-Solomon algebra A(A) as a free K —submodule of a
hypersolvable arrangement A, that was clarified by Al-Taai , Ali and Majeed (2009, [13]).

The study of the Orlik-Solomon algebra A(A) is motivated by creating some
topological invariants of the complement M(cA) of an arrangement A. For example, for a real
r —arrangement in R", the number of regions of the complement M(A) is, )./, dim 4;(A),
see [14]. For a complex r —arrangement A in C", the complement M(A) is a path-connected
manifold which is a minimal CW space for some cases and for 1 <k <r, dimA(A)
represents the number of the k — cells in each skeleton. Furthermore, for a € A;, one can
define a local coefficient system L(a) and the connection between H*(M(A), L(a)) and the
cohomology of the Orlik-Solomon algebra H*(A(A); a) has been studied in many papers. In
fact, there are many results relating to dim H'(4(A); a). In the case char X = 0, it has
been shown in [15] that dim H(A(A); @) can be determined by a particular set of elements
from L(A). However, little is known about the higher dimension dim H? (A(A); a) for p >
1, [15, 16] . This paper contains four sections. The first one is devoted to introduce the
preliminaries that we needed in this work. The motivation of each one of the other sections is
to calculate the dimension of H¥(A(A);a) for1 <k <r—1.

2. PRELIMINARIES

In this section we briefly sketch the notions; O-S algebra, NBC module and partition
module. Moreover, we will introduce a definition of the cohomology for O-S algebra. From
now on, we will make assumption that A = {H,,...,H,} is an essential complex r-
arrangement with an arbitrary total ordering < on the hyperplanes of it.
2.1 The Orlik-Solomon Algebra: [2]

Let {ey,, ..., ey, } be a set that one to one correspondence with A via the ordering < and
let % be any commutative ring. The Orlik-Solomon algebra (or for shorten O-S algebra)
A, (A) is defined to be the quotient of the exterior K -algebra, E, = Axso(@puen Key), by

the homogeneous ideal I,(cA) is generated by the relations, Zle(—l)"‘l ey, ...ejjl] ey,

forall 1 <i; < - < i, < nsuch that {Hl-l, ...Hik} is dependent subarrangement of A, where
the circumflex ® means ey, is deleted.
J

Assume we have 9F:E, - E, to be a K-linear mapping defined as; ag(em) = 0;
0f(ey) =1, for all He A and for 2 <k <r, 9 (ec) = X, (-1)F ! €y, €, Oy,

¢ ={H;,..H; }. Notice that (E,, ) forms a chain complex, that is called an exterior
complex and the chain complex (A,(A),d#) receives a structure as acyclic chain complex
from the exterior complex (E,,df), where 04 =1, 0f and y,:E, - A,(A) be the

canonical chain map. The acyclic chain complex (A, (A), d2) is called the O-S complex.
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2.2 The NBC module: [2]

For any commutative ring K, the broken circuit module NBC,(A) of the exterior K-
algebra E, defined as; NBCy(A) = K and for 1 < k < r; NBCy(A) is the free K-module
of E;, with (no broken circuit) monomials basis {e.-|C € NBC, (A)}, i.e.;

NBC(A) =®cenpe, ) Kec and NBC,(A) =@_o NBC;(A).
Notice that, the broken circuit subcomplex (NBC,(A), 0N5¢) inherits a structure as a cyclic
chain complex from the exterior complex (E,,d%), where 9NB¢ =09Foi, and i,:E, —
NBC.(A) is the inclusion chain map. Moreover, the restriction of the canonical chain map
Y, E, » A,(A) of the broken circuit module NBC,(A), is a chain isomorphism, defined as;
Forl1 <k <r, Yplec) =ec+ I (A) = ac, C € NBC,(A).

;\IBC a£v_316 aIZVBC all\lBC aéVBC
0 - NBC,(A) —> NBC,_,(A) —> -+ —> NBC;(A) —> NBCy(A) — 0
lpr ‘L l/)r—l ‘l’ 7111 ‘l' wO ‘l'

aA aA A aA

A ~ d a8
0- A (A) — A,_1(A) —= - A,(A) — Ay(A) —0

Thus the O-S algebra has the following structure as a free K-module:

A, (A) =@k= Ak(A) =@f=o (Bcensc, ) Kac).
We emphasize that, the Poincare polynomials of an arrangement A and the O-S algebra
A, (A) are equal, i.e. P(A,t) = P(A.(A),t). Therefore, for 1 < k < r, the k" Betti number
b, of the Poincare polynomial P(A, t) will be b, = |NBCy(A)|.

2.3 Partition module: [2]

Let IT = (114, ..., IT,) be a partition on an r-arrangement A and let & be any commutative
ring. A partition ZC-module is defined to be (IT), = (I1; ), @ ... Q (I1,)., where for 1 < k <
£, (Iy), is the free K-module with basis 1 and the elements of II,. For each B =
{H;,,..H; } € S (I) the set of all k —sections of 11, i.e. H; €; , 1<i; <--<i<?
and 1 <m < k, define; gg = x; @ ... ® x, € (), as;

Xj =

{Hj ifj=i,forsomel <m<k
j

1 if j#ipforall<m<k

We agree that each of g5, = 1 ® ... ® 1 and qg is homogeneous of degree k. Denote (IT),
the k™-homogeneous part of (IT),. Therefore,
I1). :®£=0 (I :®£=o (@Besk(n) Kqg )

and {qg|B € S, (I)} forms a basis for the free -module (IT),. Furthermore, {qgy;|H € T1 }
forms a basis for the free K-module (I1)., 1 <k <. Define a XK-linear mapping
ol (M. » (M. as; al(q) =0, 0{'(gy) =1, for all HEA and for 2<k <¢¥,
0k (gp) = Xr_ (—D)k? qs;, Where B = {H;,, ..H, } € S, (M), qp=x0..Qx, and
05, = 0® ...®FI?}® ..®x, by means of FI?} = 1. dF is a differentiation on (IT), and the
chain complex ((I1),,d7) is called the partition complex. For 1 < k < ¢, define the a map
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Pr:{qp|B € S (ID} > A.(A), as  ¢r(gp) =ag=ep+ [ (A), BES). Let
@r: (I = Ax(A) be the unique K -linear map that extend this assignment. Accordingly,
there is a unique K-chain mapping ¢,: (IT), — A, (A) between acyclic chain complexes.

2.4 Theorem [13]
Let A be an £ — generic r —arrangement. Then;

1.for 1<k<r-—1, be NBC(A) =S, () and NBC.(A)=S,(ID\
(S-(IMNBC,-(A)), where BC,.(A)is the set of all  —broken circuits of A and,;
2. The O-S algebra has a fashion as a submodule of the partition module (IT) with,

br(ACA)) = 1S, (M = (}) and b, (A(A)) = ((-1).

2.5 Cohomology of O-S algebra: [16]

Let a € A;(A) with a =Y, 4;a; for A; € K. Multiplication by a giving the
differential dk:Ak(c/l)gAkﬂ(c/l) forms a complex (A(A), a). The cohomology of this
complex is said to be a cohomology of the O-S algebra and it is denoted by H*(A(A), a).

2.6 Theorem: [16]

Let A be a central hyperplane arrangement. Let a =Y, A;a; for A4, € K. If
?=1 Aia; # 0, then H*(A(Uq), a) =0.

2: THE STRUCTURE OF H'(A(A), a):

From now on we make the assumption that, A4 will be an £ —generic r —arrangement
with HP T = (I1,, ..., IT,) and exponent vector w = (1,---,1) and £(A) = |A]|.
3.1 Lemma:
Ifa=a; —a;, for2 <i <, then:
1. dyi(ay) = di(a;) = aya; and;
2. dim(Imd,)=+¢—-1.
Proof:
Firstly, we study the homomorphism, d;:A;(A) 5 A,(A). Since A is € —generic
r —arrangement, then E; = (e, €5, -, €7) =A;(A).
For 1:
d,(a,) = a,a, — a,a; = —a,a; and;
di(a;) = a;a; — a;a; = —a44;. S0, d,(ay) = dq(a;).
For 2:
To prove 2, we study d,(a;), for 2 < j # i < ¢. From the definition of d;: 4; - 4,;
—qa;—aa; 1<j<is<s?
—qat+aa; 1<i<j<{t’
Notice that, since A is £ —generic r —arrangement, then;
E, = (e, e,)|1 < iy <ip <€) = Ay(A).
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So,for 1<i<j<¥;
0;(a1a;0)) = a;a; — ay0; + a1a; = a7 = 9;(a,4;,05) — ara; + ayq; ... (2.1.2)
Substitute (2.1.1) in (2.1.2), we have;
dl(aj) = aa; — az(alaiaj) +a,a; —aqa; = —62(a1aiaj) + aqa;.
Then 9, (alaiaj) = dl(aj) - aqq;.
Since e, e;e; is an NBC-monomial, hence d,(e;) — e;e; € I; S0, dy(a;) — a;a; # 04,. Then
dy(a;) # a,a; and the number of such cases is £ — i.
Similarly, for1 <j<i<4¥;
az(alajai) = aja; — a1a; + a;a; # 04,. SO,
62(a1ajai) = dl(aj) +a.a; #0
Since e, e;e; is an NBC-monomial in E, hence 9, (e;eje;) & I, then d;(a;) # —a,a; and the
number of such casesisi — 1.
So, the number of monomial in the bases of Imd; is¢ —1. m
3.2 Lemma:
Ifa=a;—ajforall1 <i<j<?, then;
1. dy(a) = dy(a;) = —a;a;, and;
2. dim(md,) = (*").

Proof:
For 1:
dl(ai) =a;.a=aqa; —q;a; = —a;qa; and;
dl(aj) = a;.a = aja; —aja; = —a;a;. ThUS, dl(ai) = dl(a])
For 2:

Now, to find the dim(Im d,), we looking closely to the following cases;
aa; —aa; 1<k<i<j<?¢

di(ay) = ag.a = apa; — apa; = { ~Ga — ad;; 1 <i<k<j<t.(221).
—qiag +aja; 1<i<j<k<s?

Since E, = (e; e;,)|1 < iy <ip <) = A,(A), hence dy(a;) is written as a linear
combination of NBC monomials. By studying all the cases above, we pointing that there are
nol<k <1< ¥¢suchthat d,(a;) = d,(a;) and by simple calculation of the number of the

generators of Im(d,) we have dim(Im d,) = (*;").m

3.3 Proposition:
Ifa=a;—a;2<j<{,then:
1. dz(alaj) = 0A3;
2. dim (kerd,) = dim (Im d,);
3. HY(A(A);a) = 0;
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4. 1fr > 3, then dim(Im d,) = (¥) — (%) and;
5. Ifr =3, then dim(Im dy) = (*}%).
Proof:
Firstly, we will study the homomorphism d,: A, — A5 that is defined as;
dy(ak,ax,) = ar,ax,a; — ag, a,a;, Where2 < j < fand1 < k; <k, <?
We have many cases to study as follows;
Case (1):-Fork; = 1and k, =j,
dz(alaj) = aiaja; — aja;a; = 04,. Thus, a,a; € kerd,.
Case (2):- Ifky =1and 1 <k, <j < ¥, thus;
dz(alakz) = a40k,01 — 1A, q; = —0Aq 0y, d;.
As well as; dz(akzaj) = ay,q;a; — Ay, q;a; = a1y, q;,
i.e. dz(alakz) = —dz(akzaj) # 0y,.
Case (3):-Ifky =1and 1 <j <k, < ¥, then;
dy(asax,) = aya;ay,. Consequently, dy(a;ay,) = a;a;ay,.

So, dz(alakz) = dz(ajakz) # 0y,
Case(4):- If 1 < ky < k, <j < ¢, then dy(ay,ax,) = a1ax,ax, — ax, Ak, a; --(2.3.1).
Since A is £ —generic r —arrangement, here we have two possible cases in this case, are
listed below:

o If ¥ >3, we have dy(ay,ay,) = a,ax,ax, — ax,ax,aj # O,, is written as a linear

combination of NBC- monomials, or;
oIf r=3, we have d,(ejey ex,e) €. Thus; ay ay,aj — aiax,a; + a;a,a; —

a1ay, ag, = 04,. SO, ay,ap,a; = a1ay,a; — a1ay,a; + a1ay,ax, ... (2.3.2). By

.
substituting (2.3.2) in (2.3.1), we have d,(ax,ax,) = a1ax, A, — a4, a; + 14y, a; —
a,Qy, Ay, = A1Q,4; — A1ay,a; # 04, is written as a linear combination of NBC-
monomials.

Case B):-If1 < ky <j <k, <%, then dz(aklakz) = a0y, Ay, + A, a;ay, .. (2.3.3), in this

case there are two possible cases as follows;

e If r > 3, then e, ey, e; is an NBC-monomial of E3, since {Hy,, Hy,, H;} is an NBC base
of A. Thus; d,(ax, ax,) = a1ax,ax, + ax,a;ax, # 0,, is written as a linear combination
of NBC- monomials, or;

e If r = 3, we have e,_ey,e; is a broken circuit monomial of E5 , since {Hy,, Hy,, H;} is a
broken circuit of 4. We know that, d,(e; ek, ejex,) € I3. Thus;

Ay, AjAy, — 10k, + A10x Ay, — 105, a; = 04, ... (2.3.4).
By substituting (2.3.4) in (2.3.3), we have;
dz(aklakz) = 1Ay, A, + A10;Qy, — A1Qy, Ay, + Q105 Qj = A10y, A + a,a;a;, F 04,;
is written as a linear combination of NBC- monomials.

Case 6):-1f1<j<ky<k,<j<¢¥,then;
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dz(aklakz) = aiay, Ay, — a;a, Ay, ... (2.3.5),
We have two possible cases can be obtained from this case;

oIf r > 3, we have e¢; ey, e, is an NBC monomial of E3, since {H;, Hy,, Hy,} is an NBC
base of A. Thus, d,(ay,ax,) = aay,ay, — aja,ax, # 04, is written as a linear
combination of NBC- monomials, or;

o If r =3, then e;ey, ey, is a broken circuit monomial of E; , since {H;, Hy , Hy,} is a
broken circuit of A. Thus; 9,(e; ejey, ex,) € I5 and;

ajay, Ay, — Q1A Ay, + A1Q;ax, — a1a;a, = 04, ... (2.3.6)

By substituting (2.3.6) in (2.3.5), we have, d,(ay, ax,) = —a,a;ax, + a,a;jay, is written
as a linear combination of NBC- monomials.

Now, we clarify our assertion:

For 1:- It is clear from case (1).

For 2 and 3:- From our study of the 6™ cases that we discussed above, we have just one 2 —
NBC-monomial a,a; that satisfied; d,(a;a;) = 04,. But a,a; € Imd, and since
Imd, € ker d,, hence Im d; = ker d,. Which implies that H1(A(A); a) = 0.

For 4:- The number of the images of the NBC monomials that are need to remove it from the
(g) — NBC monomial came from case (1) and the repetition that came from cases (2)
and (3) and the number of such cases is equal to £ — 2. Thus;

dim(mdy) = (%) —¢+2=(%) - (“}%).

For 5:- If r = 3, then dim(Im d,) = ¢ — 2 = (*}?) is the number of the 2 — NBC monomial

that begin with a, and containno a;. m

3.4 Proposition:
Ifa=a;—a;1 <i<j<¢?,then:-
dz(aiaj) = 0A3;
kerd, = Imd;;
H'(A(A); a) = 0;
If r > 3, dim(Im d,) = (%) — (*;%) and;
If r = 3, dim(Im d,) = (“}%).

o M wnh e

Proof:
We will study the homomorphism d,:A, - A; to serve our aim, as;

dy(ak,ax,) = ax,ax,a; — ax,ax,a;; Where 1<k; <k, <¢. We have the following
possible cases for choosing k;and k,;

Case (1):- If k;, =i and k, =j, then dz(aiaj) = q;a;a; — a;a;a; = 04,. Thus, a;a; €
kerd,. In fact a;a; € Imd;.

Case (2):-Ifky =iand k, #jand 1 < k, < ¢ then;
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ag,a;a;; k2 <i <] —dz(akzaj); kZ <i <]
do(aiar,) = Qi a; — q;ag,a; = { —Aik, a5 §<ky <j={ —dy(ax,a;); i <ky<j.
a;a;ag,; i< j<k, —dz(ajakz)i i< j<k,

We have two possible cases can be obtained from this case;

e |Ifr > 3, then dz(aiakz) is written as a linear combination of 3-NBC monomials.

e If r=3, as we know, either d,(ejer,eie)) €1z, 0,(eseier,e;) €13 or
0,(ereiejey,) € Is depends of k, <i<jori<k,<jori< j<k, respectively.
So;

either, ay,a;a; — aya;a; + a;ay,a; — aja,a; = 04, OF;
a;a,aj — a10,a; + a;:a;a; — a,a;0y, = 0A3 or;
a;a;ay, — a;a;ay, + a;a;a,, — a;a;a; = 04, . Thus;
a14;a; — A 05,4 + a1ay,a; Kk <U<j
dz(aiakz) =4 ~a10%,Q4; + a;a;a; — a,a;ag,,; i < kz <j
a,a;ay, — a10;0;, — a1a;a;; 1< j<k,
—dy(ayax,) — dy(aya;);  kp <i<j
= dz(alakz) + dz(alai); l < kz <] .
dz(alakz) + dz(alai); i <] < k2
IS written as a linear combination of 3-NBC monomials.
Case (4):-Ifk, #iorj,k, #iorj and1 < k; < k, < ¥, we have;
Ap, g, A — A, Qg A5 Ky <k <i <j
—Q, Ay, — g, g, 45 Kk <P <k, <j
da (i, Ar,) = Qi A, @ — A, Qg @ =3 Bl B, — Ay Uy @5 L < by <ky <
aiaklakz + aklajakz; i< k1 <] < k2
a;Qy, Ay, — QA A,; L <j<ky <k,
(2.4.1)
If r > 3, then any 3 —monomial a; a;,a;, is an NBC monomial and dz(aklakz) is
written as a linear combination of 3-NBC monomials.

e |If r=3, we have 64(a1ak1ak2aj) = 0,,, since {H,, Hy , Hy,, H;} is dependent. So,
A, A, Aj — A1y, 4; + 10y, a; — A1 Ay, Ak, = 04 (242) So we have the
following cases:-

Case (4.8):- If ky <k, <i, then 9 (ajax,ax,a;) =0,,, since {Hy, Hy , Hy, H;} is
dependent. So ay, ay,a; — a;ay,a; + aa;,a; — a,ay, ay, = 04,.. (2.4.3). From the equations
(2.4.1), (2.4.2) and (2.4.3) above we have;
dz(aklakz) = a10y,a; — 14y, a; + a1ax, A, — A1, 0; + A1 Ak, Aj — A10p, Ay, =
—dz(alakl) + dz(alakz).
Case (4.b):- If ky < i < k,, then;

64(a1ak1aiak2) = Ay, Q;Ay, — 100k, + A1Qg, A, — 105, a4; = 0y, ... (2.4.4).

3
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Since {H,, Hy,, H;, Hy, } is dependent. From the equations (2.4.1), (2.4.2) and (2.4.4) we have;

dy(ak,ax,) = A, a;Qy, — A, Ak, = —01Q;ax, + 10k, Ak, — A1 Qg i — Qg A, & +

a3 Ay, a; — aray, A, = —dy(aiax,) + dy(ayay,).
Case (4.0):- If i < kq < k,, then,
64(a1aiak1ak2) = a;ay, Ay, — 10y, Ak, + A1Q;0x, — A1a;a;, = 04, ... (2.4.5).
Since {H,, H;, Hy, Hy,} is dependent subarrangement. From the equations (2.4.1), (2.4.2) and
(2.4.5) we have;
d,(ax,ax,) = a;ax, ay, — ax, ax,q
= a1Qy, A, — A10;Ay,+0,a;a), — A103,0;+0a1 Ay, Aj — A1Ay, Ay,
= 14,0y, 0,0y, 4j — A1Q;0y, — A10y,Q; = dz(a1ak1) + dz(alakz).
o Ifr=3andk, =1,thend,(aia,) = {2112:222; . leccllf;z: ;]7: 11<<il <<]k2<7(2]

written as a linear combination of NBC- monomials.

Case (5):-
e Ifr > 3, wehave
a;ay, a, + ai, a;ag i<k <j<k,
d,(a,. a..)=a,a.a; —a, a,a; = Lo ! 2 .. ..(2.4.6
2(ax,0x,) = x, 01, 81 = G, 01, {aiaklakz — a;ay, a, i <j<ky <k, (2:4.6)

e If r =3, we need to write dz(aklakz) as a linear combination of NBC monomials.
Since {Hy, H;, Hy,, Hy,} is dependent, then;
64(a1aiak1ak2) = a;ay, Ay, — A10x, Ak, + A1;0x, — A1Q;ax, = 04,.. (2.4.7),
we have two cases as;
Case (5.1):- If ky <j <k, then d,(aja;aray,) =0, since {H,, Hy, H;,Hy,} is
dependent. Thus, ay, ajay, — a,a;ax, + a1ay, ax, — a1ax,a; = 04,.. (2.4.8).
From the above equations (2.4.6), (2.4.7) and (2.4.8) we have;
dz(aklakz) = a1Qy, Ay, — A10;0y, + a10;a,, + a1a;a,, — a1a, A, + 10, a;
= a1a;ay, + a1a;,a; — a1a;ay, + a,a;ay, = —dz(alakl) + dz(alakz).
Case (5.2):- If j < kg < ky, then 8,(ajajay, ay,) = 0,,... (2.4.9), since {Hy, H;, Hy,, Hy,}is
dependent subarrangement. Thus, we have;
do(ax,ax,) = @10y, a, — 10,0k, + A1;Ax, — 1Ak, Ak, + A1 Ax, — A10,Ay,
= a1Q;Qx, — A1Q;Q, — A1Q;Qy, + 1A, = —A 0, Q; + A 05, Q; + a105,0; — A1, Q;
= —dz(alakl) + dz(alakz).
Now, we verify our claim as follows:-
For 1:- See case 1.

For 2:- From case(1), we have just one £ — NBC monomial satisfied d,(a;a;) = 0,,, which
is a coboundary. Since a;a; € Im d, < ker d,, hence kerd, = Im d,.
For 3:- It is clear that, H1(A(A); a) = 0.
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For 4:- If r > 3, the repetition that we discussed them in the cases 2 and 3 and from case 1 is

¢—2;dim(Imd,) = () — ¢ +2.

For 5:- If r = 3, from our discussion of all cases. If » = 3, it is clear that the collection B =
{dy(arax,):2 <k, <€ and k, # ior j} U {d,(a,ax, )}play as a basis for Im d,, so;
dimd, = |B|=(¢-3)+1=¢-2=("?). n

4 THE STRUCTURE OF H?(A(A), a) AND H3(A(A), a):

4.1 Corollary:
Ifr =3and a = a; — q; for 2 < j < ¢; then dim H2(A(A),a) = (“;") = (“}%).
Proof:
Since ds:A; — 0 is the zero homomorphism. Then kerd; = A; and dimkerd; =
(1) Since Im d, < ker d; and from proposition (2.3), we have;
dim H?(A(A),a) = dimker d; — dim Im d,
=dim4; —dimimd, = (;) - ¢+2= () - (). =
4.2 Corollary:
Ifr=3 and a=a;—q; for 1<i<j<¢ we have dimH2(A(A),a) = (*;") -
(7))
)
Proof:
Since ds;:A; - 0 is the zero homomorphism, then Kkerd; = A; and since
Imd, < kerds, then;
dim H?(A(A), a) = dim(kerds / Im d,)
= dim A3 —dimImd, = (;") —¢+2=(") - (*;) =
4.3 Proposition:
Ifr > 3anda=a1—aj,2 <j < ¢ Then:-
1. d3(a1amaj) = d3(a1ajam) =0,,,ifeitherl<m<j<forl<j<mc<<.
kerd; =Imd,.
H?(A(A),a) = 0.
If r > 4, dim(Imd3) = (g) — ({};2) :
If r = 4, dim(Im d3) = (£) - (“}%).

o~ wn

Proof:

Firstly, we will study the homomorphism ds: A; — A4. As we know the NBC-
monomial basis for Az is; By = {am, Am,Am,: {Hm,, Hmy Hp} S Aand 1 <my <m, <
mz < £} and that will enable us to exercise ds. SO, ds(am,am,am,) = Am, Am,m, i —
A, A, Am, a;. TO serve our aim we will discuss all the possible cases.

Case (1):- If my = 1 and m, or m3 = j. Then as we mentioned it previously, d; (alajams) =
d3(a1am2aj) = 0y,
Case (2):- If my = 1 and m,, ms # j then;
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10, A, 4; m,<mg<j<¥
d3(a1am,Am,) = Q1 A, 4 = — 010, GAn, My <j<mz <{
10 Am, Ay, j<m,<mz<¥

—d3(am,am,a;) m,<my<j<¥

={ dy(am,aam,) my<j<mz<L #0,,.
—d3(ajam2am3) j<m,<mz<?
Notice that dg(alamzam3) is an 4 — NBC monomial for any r > 4. The number of such
repetitions is equal to the number of the 3 — NBC monomials that begin with a, and the
number of such monomials equal to the number of 2 — NBC monomials that not begin with 1
and not equal to j. Thus we have (";2) repetition in this case.
Case (3):-1f1<my<my<mg<¥and m, #iorj for n=1,2,3. Then we have the
following cases:-
Case (3.a):-If1 <my <m, <mz <j <4, then;
ds (aml m, ams) = Omy Am, Amy A1 — Amy Am, Ay 4
= —Q1 A, Am, A, — A, A, A, 4; - (3.3.1)

o If r>4, then ds(am, am,am,) # 04, can be written as a linear combination of 4 —

NBCmonomials.
e If r=4, then we have ds(eiem, em,em,e) € s, A, A, A, 4j — Q10 A, A +

A1 A, A, A — 1y, Ay, A + A Gy, Ay, Ay, F Oy, .. (3.3.2)

From the equations (3.3.1) and (3.3.2) above, we have;

d3(@m, A, A, ) = =1 Ay, Ao, Ay, — A1 A, A, G + Qg Uiy Ay, G
—A1Qm, A, A + A1 Ay, O, Ay = — A1, A, A + Q1 Qg Ay, Aj — A1 Ay A,
= —d3(a1am2am3) + d3(a1am1am3) - d3(a1am1am2) # 0y,

Case (3.b):- We have three cases:
Case (3.b.1):- If 1<my <m, <j<myg <7, then d3(am1am2am3) = A, A, A, g —
A, Ay A, A = — A1 Ay A, Ay, + Ay, A, A Ay, . (3.3.3).
o If r>3, then ds(am,am,am,) # 04, can be written as a linear combination of 4 —

NBC —monomials.
e Ifr =3, then we have 05 (e, e, em,€jem,) € I4. SO,

Am,y A, AjOmy, — Q1 0p, QA + A1 Ay, Qi Ay, — A1y, Ay, G, + Q1 Qi A, @ = 0y

(3.3.4). From (3.3.3) and (3.3.4) we have;

d3(am1am2am3) = —A1Qp, A, Ay, + Q10 Aj A, — A1y, QO + A1 Ay Ay, Ay, —

1A, Am, Aj = A1 0y, A4jAy, — A0y, Ajlym, — A0y, Ay, 4 = —d3(a1am2am3) +
d3(a1am1am3) — d3(a1am1am2).

Case (3.b.2):-1f1 <my <j <m, <my <7, then;
dg(amlamzam) = A, A, Amy A1 — Ay A, A, 4 = — A1 0y, O, Ay, — Ay @A, Qi -

(3.3.5).
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o |If r> 3, then d3(am1am2am3) # 0,4, written as a linear combination of the 4 — NBC-
monomials.
e Ifr =3, then we have 05 (e, e, €jem,em,) € I4. SO;
A, A, A, — A A, A, + A1 Oy Q) A, — Qg Ay, Ay, + A1y, Ay, = Oy
(3.3.6). From (3.3.5) and (3.3.6), we have;
d3(@m, am,@m,) = —A1am, Am, Gm, — A1 A0, Am, + Q3 A, Ay, A, — Qg A, A, +

4

A0, AjAm, == A1 QA A, — Q0 QA + A1 Ay, A Ay, = —d3(a1am2am3) +
dg(alamlam3) — dg(alamlamz) # 0y,
Case (3.b.3):- If 1<j<my <m,<mz<4¥, then d3(am1am2am3) = A, A, A, Qg —

A, Ay A, Af = —A1 Ay A, Gy, + Ay, Ay, A, - (3.3.7).
o Ifr>3, ds(am,am,am,) # O4, can be written as a linear combination of the 4 — NBC
monomials.

e Ifr =3, then we have 05 (e ejem, em,em,) € I4. SO;
* A, Am,Am, — A1, Am,Am, + Q10;Qm, Am, — 0100, Am, + 018, A, = O
(3.3.8). From (3.3.7) and (3.3.8), we have;
d3(@m, A, A, ) = — Q1 G, Ao, Ay, + Ay A, Ay Ay, — A1 Qi Aoy, + A4 Ay, Aoy, +

PR

A10Am, A, == 00y, A, + A1 Ay A, — Q100 A, = —d3(a1am2am3) +
d3(a1am1am3) — d3(a1am1am2) # 0y,

To prove our claim;

For (1): see case (1).

For (2): From case (1) above and lemma (3), we have a,anaj,a,a;a, € kerd; and
a,a,05,a1a;a, € Imd, for all 11<m<j<n<¢ Since Imd, S kerds, SO
Imd, = kerds.

For (3): Our claim is done from case (2); i.e. H2(A(A),a) = 0.

For (4): If r > 4, then from all cases that studied in our proof; we have dim Im d; = (5) —
() +2¢-3 =),

For (5): If 7 =4, then from all the cases we studied above we have dim/mds; = (%) —
(-1 —(—-2)= (%) —2¢+3= (%), which is depend on 4 — NBC bases that
begins by a, that equal to the number 2 — NBC bases which is not contains the
number of 3 — NBC- monomial that it contained in kerds, that is ds(a;ya;an) =
d3(a1amaj) =04, . m

4.4 Corollary :

Ifr=4anda =a, —a;, 2 <j < 4. Then, dim H® (A(A),a) = (’?;1) — (’?;2).

Proof:

Since d,: A, — 0 is the zero homomorphism, then ker d, = A, and dimker d, = (*7").

By applying Proposition (3.1), we have;
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dim H3 (A(A), a) = dim (kerd,/Im ds) = dim (kerd,) — dim(Imds) = (') -
f - -
O +20-3=("-(%).m
4.5 Proposition:

Ifr>3anda=ai—aj,1<i<jS{’.Then
1. ds(am,a;a;) = ds(a;am,a;) = ds(a;aja,,,) = 04,, for each 1<m; <i<m, <j<
my <4
Imd, = Kkerds; .
H?(A(A),a) = 0.
Ifr > 3, dim(Imds) = (%) - (7%).
If r = 3, dim(Im d3) = (?).
If r = 3, then dim H3(A(A), @) = (") = (7).

o Uk wn

Proof:

To prove our claim, we need to study the homomorphism ds: A; — Ay,
which is defined by; d3(am1am2am3) = Ay, A, A, A — A, A, Ay, @, TOr all 3 — NBC-
monomials @y, am,am, € A3, since the collection {am, am,am,: {Hm, Hm, Hm,} €
NBC;3(A), where 1 < my; <m, <mg < ¥} play as a basis for A; as a K —module. So, we

will discuss the following possible cases:-
Case (1):- If {m;, m,, m3} = {i,j, m}, then we have;

ds(ama;a;), 1<sm<i<j<¥t
d3(am1am2am3) = d3(aiamaj), lsi<m<j<st =0,,,
ds(a;a;am), 1<i<j<m<?

for this case, the number of such choices is (“;%) = ¢ — 2.
Case (2):- If my or m, ormy =i and # j, then;

ds(am, am,a:); 1<m<m,<i<j<¥
ds(@m, Qm,am, ) = d3(am, @10, ); 1<m;<i<mg<?
ds(a;am,am,); 1<i<my,<mg<?t
— A, A, 4;4;); 1<m<m<i<j<¥
=1 —Qp, 4, a;; 1<m <i<mz<?
—Qi0m, Am, 4;; 1<i<my,<mzg<?
((—Qm, Oy, 0;0); 1<sm<m<i<j<t
— A, A, 4 1<m<i<mg<j<dt
{amlaiajam; 1<sm<i<j<mz</t
- —QiAm, A, 4;; 1<i<my<mz<j<¥
a;Am, AjAm,; 1<i<m<j<mg<?
\\—a;aam,am; 1<i<j<my,<mg<?
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(—d3(am,am,q;); 1<sm<m,<i<j</t
{—d3(am1am3aj); 1<m<i<mg<j<¥
ds(am, a;am,); 1<sm<i<j<mzg<?

=) —d3(am2am3aj); 1<i<my,<mg<j<¥
dg(amzajamg); 1<i<m,<j<myg<?
—ds(ajam,am,); 1<i<j<my,<mg<¥

e Ifr =4, we will discuss all cases given in equations (2.):-
Case (2.1):- If 1<my<m,<i<j<¢¥ then {H,H,  Hy, H;,H} is a dependent
subarrangement of A. Thus, ds(e; e, em,ei€;) € I, and;

ds (A, Am, A1) = —A1Qm, ;8 + Q3G Q;A; — A1y, A, G + Q1 Ay, Ay, A
= ds(a,am,a;) — ds(a1am,a;) + ds(a;am, am, ).
Case (2.2):- If 1 < m,; <i <mz <j < ¢, then the subarrangement {H,, H,, , H;, Hy,,, H;} of
A is a dependent subarrangement. Thus, d5(e1ey, e;em, ;) € I, and;
d3(am1aiam3) = —A1Q1p, 00 + Q10 Q0] — A1 A4y Ay, A + Q10 A, Q; =
ds(a1a;am,) + ds(aram,a;) — dz(ayam, am,).
Case (2.3):- If 1 < m, <i <j<mgz < ¢, then the subarrangement {H,, H,, , H;, H;, H,,,} of
A is a dependent subarrangement. Thus, 9s(e; e, e;ejenm,) € I, and;
d3(am1aiam3) = A10m,0,4; — 10y, Qi + A1 Ay A, A — Q1A Ay, A = dg(alaiamg) +
d3(a1am1ai) — d3(a1am1am3).

Case (2.4):- If 1 < i <m, <mz <j < £, then the subarrangement {H,, H;, Hy,,, Hy,,, H;} of
A is a dependent subarrangement. Thus, s (e;e;ey,em,€;) € I, and;

d3(am1aiam3) = —al-amzam3aj = —alamzam3aj + alaiam3aj — alaiamzaj +

10;Am, Ay, = d3 (alaiamB) + d3(a1aiam2) - d3(a1am2am3).
Case (2.5):- If 1 < i <m, <j <mgy < £, then the subarrangement {H,, H;, Hp,,, H;, H,, .} Of
A is a dependent subarrangement. Thus, 9s(e;e;ey,ejem,) € I, and;
d3(@m, AiQm,) = QiGm, AjAm, = A1, A0y, — Q1 0;Qj A, + 0300, Ay, — Ay Ay, & =
ds (alaiamB) —d3 (alaiamz) + d3(a1am2 am3).
Case (2.6):- If 1 <i <j<m, <mg <, then the subarrangement {H,, H;, H;, Hp,,, Hp, }
of A is a dependent subarrangement. Thus, s (e;e;ejem,em,) € I, and;
dg(amlaiam3) — 100y, + Q1A Ay, A, — 100y, + A10;0jAr,, = d3(a1aiam3) —
dg(alaiamz) + dg(alamzams).

For this case, the number of such repetition is equal to the number of our choices of
2 —indeices equal i and not equal j from € choices which is equal to (fgz).
Case(3):- If my orm, or myz # i or j, then;

ds (am1 m, am3) = Qm; Am, Amy & — Amy Am, Ams 4
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( am1 @myam3ai—Amq AmyAmzaj; 1smq<my<m3z<i<js<{é
—am4 @mya;%m3=%mq Am, Amzaj; 1smq<my<i<mz<jsé
—amqam, aiam3 +tamyamyajams; 1smq<my<i<j<mszs{
amj 2jAmyAm3—amq Amy Am3aj; 1smq<i<mp<mgz<jsf
Amqa{am,amz+amq Amy, ajams; 1smq<i<mp<j<mszs{
— < —@m;a{am;am3z —AmqajAm,Amsg; 1smq<i<j<mp<mgzs<?t
—@ai{@m1 amy 4mz=%mqaAm, Amzaj; 1sismi<mp<mz<js<t
—@{am, m, Amz+am, Am,a;Amg; 1sismi<my<j<mzs<{t
-a;amqam, am3—am1ajam2 ams; 1sismi<j<mpy<mgzs<?t
-a;amqam, am3+ajam1am2 ams; 1si<jsmqi<mpy<mgzs<{t

\

e If r > 4, then every subarrangement {H,, , H,,, Hp,, Hy, } With 1 <ny <n, <nz <n, <
¢ forms a 4 — NBC basis of A, hence d3(am1am2am3) can be written as a linear
combination of NBC-monomial. So, there is no repetition among them and the number of
such cases is equal to all the choices of the indices m; < m, < m3 from £ choices such
that m,, m, and m; are not i or j, that is (*;?).

e If 7 =4, then for every cases above we will rewrite dz(am,am,am,) as a linear
combination of NBC-monomials by using the fact that every subarrangement
{Hy,Hy, Hy,, Hp,} With 1 <ny <n, <ng < £ forms 4 — NBC base for A, and the fact
that every {Hy,H;Hp ,Hpy,, Hy,} and {Hy, Hj, Hy ,Hpy,, Hy,} are 5 —dependent
subarrangement of A forall 1 < m; < m, < my < ¥ and notequal to i or j.

Notice that, if m; = 1 for the cases (3.1) to (3.6), then d3(am1am2am3) can be written as a

linear combination of NBC-monomail, so we shall assume m; > 1 for the other cases and by

a simple calculations we get:
d3(@m, Am,Am, ) == d3(a1am,am,) — dz(a1am, am,) + dz(aram, am, ).
Now we will prove our claim as follows:

For (1):- It is clear from Case (1).
For (2):- From the fact that Imd, € ker d; and from case (1) we have each of

ama;a; = d(ama;), a;ana; = d(a;ay), , aajay = dy(iay) € Imd,. SO
ker d; = Im d,.
For (3):- H2(A(A), a) = T2 =0
2

For (4):- If r > 4, from our discussion in the cases 2 and 3 above, we have I'm d5 will be
generated by all the 3 — NBC- monomials a,, a,,,a,,, such that; There are no two

choices of them can be i and j; and by deleting the 3 — NBC- monomials that satisfied
two of a,,,, an,, and a,, are not a; or a; and by deleting the 3 — NBC-monomials that

satisfied two of a,, ,an,, and a,,, are not a; or a; and the third is a;, where such

monomials represent their repetition that we discussed in case 2 above. So
: _(t £-2 PR ¢ -1

dimIm ds = (5) — (“3°), where the number of repetition is equal to (5) — (") —

-2 =2
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For (5):- If r = 4, then Im d5 has a basis, the set of all 3 — NBC-monomials that begin with
a, plays as a rule to construct it by removing that containing a;, so dimImd; =
£-2
(7))
For (6):- If r = 4, then d4: A, — 0 has ker d, = 4, so dim ker d, = (“;"). From (5) above
we have H3(A(A), a) = dimker dy —dimImds; = (") = (7%). =

5.A GENERALIZATION OF OUR WORK:

In this section, we will generalize our work as follows:

5.1 Theorem:
Ifa=a;—a;2<j<4then:
1. H2(A(A),a) = 0.
2. dim(Imd,_,) = ({22).
3. dim (H™'(A(A),a) = ((2D) - (“2D).
Proof:
The K —homomorphism d,_;: A,_; — A, is defined as;
dr—l(am1 "'amr_l) = Quy, A, Q1 — Ay A G
for all NBC-monomial related to (r — 1) — section {H,, , -, Hp, _ } of II. We will study all
the possible cases for our choicesto my < m, < -+ <m,_; < ¥, as follows:-
Case (1):-Ifm; =1and my = j forsome 2 < k < r — 1, then;
dr1(ay Q. ) = a1 Q. Qg — Ay @Ay, @ =0, — 0, =0y
Now, we can prove (1) above as; if {Hp, , -, Hp__ }, thena, ---ap, ., € kerd,_;. We notice
that dr_l(aln-c’z}'--amr_laj) = (-1)™'a; - a; - ap,_,, Where m is a positive integer
represents the number of transposition that we needed to rearrange a,,, *** a,,,_, With m; =
1<m, < <j<--mp_y <¥. Thus, kerd,_; =Imd,_, and our claim in (1) above is
done, that is H""2(A(A),a) = % =0.
Case (2):- If my =1 and my #j for all 2 <k <r—1, then we have the following:-
dr—l(am1 "'amr_l) = (-D)""a, e = (_1)n+1(_1)rdr_1(am2 eea "'amr_l)’
where n is a positive integer represents the number of the transpositions that we needed to
reordered a; -+ a,,,_, --a; t0 be a;--a;j-ay, _ With my <m, <. <j<--mu_;. We
notice that a; -~ a; - ap, _, is an NBC-monomial.
Case (3):-If my #iand m; # j forall 1 < k < r — 1, then, we need to compute the position
of H; in Hy--Hy +Hpy HHy -Hy . Since {Hy,Hy, -, Hj, Hy |} is an
(r + 1) —dependent section for I1, hence 9,1 (e1em, =" € " em._,) € I, SO;

am see

L a] eee amr—1 — alamz ces a] ces amr—1 + alamlam3 ...aj ...amr—l + ces

r+1 —
+ (D" a1am, - aj Ay, , = 0y

This article is an open access article distributed under 17

the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).

T



http://creativecommons.org/licenses/by-nc/4.0/

Basrah Journal of Science Vol. 38 (1),1-25, 2020

we define the homomorphism d,._;: A,_; — A, as follows:-
dr—l(a"h amr—1) =0am, " Qm,_, A1 — A, A, 4 = (_1)r_1a1am1 " Qmy_y +
(D" ay, a e ay, . (410).

Thus;
(_1)Oazam1 cee a] cee amr—l + (_1)1a1a/‘r;1 .o a] .o amr ) + .o +
(D tay - dpma o a,_ + (=D*ay - ay_ Gay, - am,_ +
(—Dkay - Ay Gy Oy, Ay, H o (CD)7A @ Ay, G, = 040 (4.1.2)
So, from the equation (4.1.2); we have
azaml aj amr—l = (_1)2a1a/‘ﬂ\11 aj amr—l + -+
(_1)ka1 aTnk\_lajamk amr—l + (_1)k+1a1 amk—la\jamk amr—l + 4

(—D™tay - aj - am,_ Gm, - (4.1.3).

By substituting the equation (4.1.3) in the equation (4.1.2), we have;
dy-1(@m, -~ Om,,) = (D" g oy G A, +
(_1)r_k+3a1a’"\llam2 aj amr—l + (_1)r_k+4a1am1a/n\lz aj amr—1 + -+

r—k+1+k+1 P r—k—-1+r+1 —
(_1) al.”amk—la]amk”.amr—l + -+ (_1) al...aj...amr_zamr_l_

dr—l(am1 amr_l) = (_1)r_k+1dr—1(a1a/rr\llam2 amr_l) +
(_1)r_k+4dr—1(alamla/rr\lzamg amr_l) + -+ (_1)2r_kdr—1(a1am1 Ay, aTnT\_l)

Now to prove our conjuctor:

For (2):- That is, Im d,_; will be generated by the (r — 1) — NBC-monomials that begin
with a; and contains no a; and the number of such monomials is (i:i) the number of
all (r —2) — NBC-monomials that not contain each of a; and a;, that is;
dimimd,_, = (ﬁ:; .

For (3):- Since d,: A, — 0 is the zero homomorphism, hence ker d,. = A, and dimkerd,. =
(“~1). Therefore, dim H™"1(A(A),a) = dimkerd, —dimImd,_, = (*_1) — ({72).
|

5.2 Theorem:

Ifa=a;—a;,2<j<¢andfor3 <k <r—1,wehave;
1. H*1(4(A),a) = 0.
2. dim(Imdy) = (}) - ((22).

Proof:-

We will use the induction to prove our claim and we will recall proposition (3.3) to
show that our conjecture is true for k = 3. Assume our claim is true for k — 1 and we will
prove it for k. So, we shall begin with the definition of d: A; — Ay,,. Since the set of all
K — NBC-monomials play as a basis of A (A), so firstly we will use our ordering to arrange
the position of H; in the HP II. To explain it’s position in any NBC-base contain it, let
{Hym,, ", Hpp, } be an NBC base such that H,, # H; for all 1 <n < k, then we can assume
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the position of H; among H,,,,, -+, Hy,, that respect the hypersolvable ordering that we defined
on the hyperplanes of A is;

Hpy oo Ho  Hijy Hey 4 000y Hiy
such that;

my<mp, <--<my <j< My < <my.
n k-n
n+1
Thus, di(am, = Qmy,) = Am, = Amy @1 — A, Ay &
and we will study the possible cases of our choices of my, ..., my, as follows:-
Case (1):- If my = 1and m,, = j forsome 1 < n < k, then;
dk(alaz ---amk) =Qp Ay, @y — Ay A, @G = 0g =04, =0y, .
Now, we can prove (1) above as:- If Hy, H; € {Hp,,, "+, Hp, }, then a; -+ ap,, € kerd,. We

notice that dy_q(a;-@ - am,)=—a - ama = (—1)™"a; - a; - ap,. Thus

kerd, = Im d,_, and our claim in (1) is done. That is, H*"1(4(A),a) = Il::;—d" =0.
k-1

Case (2):- If m; = 1and m,, # j forall 2 < n < k, then we have the following:-

dk(al ces amk) = (—1)n+1a1 vee aj ves amk = (—1)n+1(—1)kdk(am2 ves aj ces amk)’
where n is the positive integer represent the number of the transposition that we needed to
reordered a; -** @, ++- a; to be a; -+ a; -+ ay, Withm; <m, <--- <j <--- <my, we notice

that a, --- a; --- ap, is an NBC-monomial.

Case (3):- If m; # 1and m,, # j forall 1 < n < k, then we have the following:-
Let {Hm,,*, Hp,} be an NBC base such that H,, # H; for all 1 <n <k, then we can
assume the position of H; among H,,,, -+, Hyy, that respect the hypersolvable ordering that we
defined on the hyperplanes of A. Thus;

di(am, ** m,) = Am, = Ay @1 — Ay -+ A, @ = (D*a1a0, -+ a,, +

(D" ay, oy, G, 11 Q-

So, dk(am1 amk) can be written as a linear combination of (k + 1) — NBC-bases.
For (2):- The k — NBC-monomial plays as a basis to Im d; with keeping in mind that we

need to remove the k — NBC-monomials contain a;. That is dimImd; = ,ﬁ) -
-2
(%)=

5.3 Theorem:
If a=a; —a;,where 1l <i<j<¢,then;
1. H%2(4(A),a) = 0.
2. dim(Imd,) = (!2).
3. dim(H™'AA), ») = (D) - (D).
Proof:-
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To show our claim, we need to study the homomorphism d,_;:A,_; = A,. As we
know, the family of all (r — 1) — NBC basis play as a role to construct a basis to A4,_;. Then,
forall (r — 1) — NBC-monomial a,,, - a;,,_,, we define d,._, as;

dr—1(Qm, = Am,_,) = Am, = Am,_ Qi — A+ A, G
we will study the possible cases for our choices to the indices 1 <m; < -+ <m,_; <? as
follows:-
Case (1): If my,, = iand my, = jforsome 1 < k; <k; <r —1, then;

dr—y (am1 amkl—laiamk1+1 amkz—lajamk2—1amk2+1 amr—1r)
Amy " Amyy 1 ViGmy4g 7" Amp=1G0 — Amy " Ay, Gy gy 7 Ay G = OAr - OAr = OAr'
For (1):-
Since Im d,_; € ker d,. and from the fact that;
dr_; (am1 e Oy, Qi Oy oo aml\,‘z_lc’z}amkz+1 ...amr_l)
= (-1 ap, ..q; .. Uy, —y Vg4 -+ Oy, G
= (1) M2qay,, ..q; oo Oy Qg Oy

Therefore, ay,, ...q; ...q; ...ap,_, €Imd,_,and Imd,_, = kerd,_;. So;

H™2(A(A),a) = kerd,1/Im d,_, = =2 = 0.
Case (2):- If m, =i forsome 1 <k; <r—1andthereisnom, =;jforallk; <k <r—
1, then;
dr_l(am1 --~amr_1) = Oy e Ay Qi e Oy G =
(D" @ Gy Wiy O,y G Cam g+ By e (43.1).
r—ky

ky—1
where k, = Min{k|H; 2 Hp,, }. Thus;
dr—l(am1 amr—l)
= (=1)rFketi(—1)""ktlg (am1 e Qe By e Qg @ oy o amr_l)
= (=1 kakaq | (am1 e Qe Oy o Qg 3 @Oy, - amr_l).
As we know, a,, o Qg Qi g ooe Oy @y oon Ui is not r — NBC-monomial, so

we need to write it as a linear combination of » — NBC-monomials. In fact;
{Hy, Hpn) ) Honye ) Hiy Hm  Honge, o Hjy Hony s ooy o, _ 3
is a dependent subarrangement of A and,
Ors1(e18m, e €y, 1 €iCmy 4y By, 1 €€y, w€m, ) € L. Thus;
(1)@, - Ay, BiOrmy - O,y Oy, -+ By T
(—Dlayan, .. W,y @Gy g -+ Cmge,_y BBy, -+ Ay F o0 F

—1)k1 a ,
(—D"a a4, o e @y oo Oy QO oen Oy oo+

ky+1’ """

—1)k2 . a
(—D*2a a4, o e @iy oo Qg GOy oee O, +
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(—D** a ap, Oy @iy o Qg Qe oo Gy o0 F
(—D"aam, o Q3 iy oo Qg3 GO, ooe By, =
Ay - Oy, 3 Qi 4y Gy, BBy, o Ay y +
(=D?a,dmy, e Qg Ay yy oo Qg _y Ay oo Ay F oo
(-DM*layay,, .. A,y By, oy o Comgey 3 iy, o Qg + 00 F
(- aya,,, .. A,y Qi y -+ Qmgey g Oy Oy, oo Ay + 00 F
=D aya,, e Ay Qi g o Qg GOy oo Gy -+ (4.3.2).
By substituting (4.3.2) in (4.3.1) we have:-
dr—l(aml amr—l) = (_1)r_k2+3(_1)r_k2dr—1(a1a/r;1am2 amr_l) +
(—D) ket (—1)*2d,_ (ayam,dm, Am, - Am,_, ) + -+
(=1 ketkat2(_q)r=kag _, (alolm2 e Oy By, ...amr_laj) + 4

(—D)?ker2(—1)rked, s (aram, - Qm,_,Gm @) = (1 dr_1(a1dm, - Am,_,) +
(—12dr—s (a1am,dm, A, ) + -+ (D7, (ayam, - G, 1Gi o A, ) +
(—D**d,_(ayam, - Qi8G5 A, ) + -+ (D) 2dr g (@ram, A, Gy ) +
—DMayay, .G .y, _aj + (D ayan, .G .cam,_ a; =
(-Ddr_1(a1am, - am,_,) + (=1)*dr_1(ayam, dm, - Am,_, ) + -+ +
(—D)™%d,_1(a1am, - Am,_,Gm—,) — dr—1(@1 Gy e @y e G e Ay
Thus, d,_;(am, ** @m,.—1) €an be written as a linear combination of r — NBC-monomials

that related to the image of the homomorphism d,_; of (r — 1) — NBC-monomials that begin
with a;. Such NBC-monomials depend on the NBC-basis that not begin with H;. As well as

my, # j or my, # i and the number of such repetition is (Y~2).
Case (3):- If thereisno 1 < n; < n, <r — 1 such that; U, = Qi and Um,,, = G- Then, we
will assume; k; = Min{k|H; < Hmkl} and k, = Min{k|H; 2 Hmkz}, to define;

dr_1(am, = Amyo1) = GO g oy, GG G, F
(D Hetlg, .. Ay, Ay, - A,y - (4.3.3);
in order to write d,_y(am, ~+@m,—1) as a linear combination r — NBC-monomials.
Consequently, we recall the fact that each of; {H;, Hp,,, ""Hmkl—l’Hi' Hmkl, vy Hy, 3, and

{Hy, Hp s ooes Hp,, .o Hjy Hpy , Hn,_, }; are dependent subarrangements of <A, hence;

o
Ors1(€18m, - €my, _1 €iCmy, - em,_,) Ory1(€1€m, - €my, 1 €iCmy, - em,_, )
Ors1(€1m, ey, 1 €€my, wlm ) ElL.

Thus;
(—1D°ay,, I T TR S (—Dtaidy, . W, -y Al - Gy, +
(-D%ayam, @, - Ay, Qi - Oy + 0 (-DRajapn, e O By e A, T

—

kq+1 m— r
(D" aia,, T 1T TR < i (—D"a1a4,, oo Oy iy oo i -
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Ay Ay - Ay, _y Wiy, - Amy_y = (=D%a,dy, or Qg Ay - Aoy +
(=D3ajam,, dm, s Qg Aoy e Ay F o0 F
(-DM*a a,, Y Y 1 Y I R o G ) L SV P A 1 P
(4.3.4). Therefore;

(—D°a,, am, T T S (—D'ayam, I T T S
(—=1)?a1am, G, -+ Amy,_, Ay, o Wiy + 700 F (-D*2a,a,,, e Oy GOy e A+
(—D*2*a,a,,, e Oy Gy e O,y + o+ (CD @y, e Gy, Qi e By
Ay A, - Ay, _y Ay, -+ Oy = (—Da,am, am, e Qg @Oy e Gy o0 F

(—-D*2a,a,,, Y T R (—D*2* a;ay,, Y Y T IR S R
(D™ ayan, s Qg Oy o Oy, - -+ (4.3.5).
By substituting (4.3.4) and (4.3.5) in (4.3.3) it follows that;
dr_1(am, =+ Am,-1) = GO0 @, e Ay GO e Ay, F
Dt ay, dp A,y iy, - Amy_y + 0
(- Rt*hatlg ap am, ... Ay, By, o Amyy 0 F
(¥ 20,0, ap, Y YT WY S 5
(D" 2 20, ay ap, .. R T T
(-1 **3a,a,, dy, Y YT W SN S 5
(—Drfethetlg a, apn, e O By o Ay o0
(DT a4 Ay e Ay, @y, T = (CD P aydg, am, 4+
(D™ %a,dp, A, o A, a; + (D)™ aya,, 0y, o, a; +
(—D™3ayay, 0y, . Om,_ @ + -+ (D> a0, am, .. Gy, 05 +
(D™ ayam,am, - G @ = (~1D7dr_4 (@10, O, ) +
(—1)rdr_1(a1am1a’,;2 ...amr_l) + -4 (—1)2rdr_1(a1am1 ...cﬁnr\_l).
Therefore, every coboundary of A,(cA) can be written as a linear combination of
r —coboundaries that begin with a,. However, the number of such NBC-monomials depends

of (r — 2)- NBC-monomials that begin with a; and contains no a;.
For (2):- From above we established I'm d,._, structure with;

dim/md,_, =dimB,_, = ({72).

For (3):- As well as; H'"1(A(A),a) = Il;e;dr =Z,_,/B,_, and;
r—1

dim H™™! (A(A), @) = dim Z,_, — dimB,_; = (1) = (!2). m

5.4 Theorem:
Ifa=a;—a;,where 1 <i<j<¢then, for3 <k <r—1,wehave:-

1. H*1(A(A),a) = 0.
2. dim(mdy) = (}) - (12
Proof:
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We will prove our conjecture inductively. Recall the proposition (3.5) for k = 3. So, we
shall assume our claim is true for k — 1 and we will prove it for k. In fact, the family of all
k — NBC-bases of A plays as a role to construct a basis to A (A). Hence we will study the
homomorphism dy: Ay — Ay, as follows; for all k — NBC-monomial ay, , ..., a,,, We have;

dk(am1 ...amk) = Ay - Ay @i — Ay e Qi G-

The image of d;, depends of the k — NBC-monomial. So, we will study all the possible cases
of these NBC-monomials.
Case(1):- If there is 1 < kq < k; <r — 1such that m;, = i and my, = j, then;
dk(am1 ...amk) = Oy o Qo @ Qg O~ Q) e G n Qo O, @ = 0, — 0y, =0y, .
Inductively, we show that such k — NBC-monomial is k —cocycles. So,
A, o A e G oo Gy, € Kerdy. Moreover, Imdy,_; S kerd, and ap, ..a;..q;..amn, €
Imd;_, = Bj_4, Since;

di-1(am, - A @ @, ) = (D7 R2q,, a;.a) .
Therefore, kerdy, = Im dy_; (Zx—1 = By—,) and H*"1(A4(A),a) = 0. That is (1) above is
verified.
Case (2):- If there is 1 < k; <k such that m;, =i and there is no 1 <n < k such that
m, = j; then, put k, = Min{n|H; 2 H,, }. Thus;

dy (am1 o Oy Qi Oy ...amk) =
k—-k —
(D) 2ap, Oy @Gy oo Oy GGy oo Oy =
(—Dk (=) Fa*24, (ayy, .. S (- MY MY} S Sy }
The important point here, dk(am1 o P amk) isa (k + 1) — NBC-monomial.
Case (3):- If there is no 1<n;<n, <k such that n, =iandn, =j, then put
ki = Min{n|H; 2 Hp, }, and k, = Min{n|H; 2 Hp, }. Thus;
di(am, - am, ) = (D Fatlq, e Ay, Qi e Ay F
(—Dfket2q, Y S TSy
That is, dk(am1 amk) written as a linear combination of (k + 1) — NBC-monomials.
For (2): Our study to the three cases above, leads to Im d; have a basis generated by k —
NBC-monomials that represent repetition in case (2) and co-cycle in case (1). Therefore,

dim(md,) = () - ((2). m

References

[1] S. Roberts, On the Figures formed by the Intercepts of a System of Straight Lines in a, Plane, and
on analogous relations in Space of Three Dimensions, Proceedings of the London Mathematical
Society s1-19 (1887) 405-422.

This article is an open access article distributed under 23

the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).



http://creativecommons.org/licenses/by-nc/4.0/

Basrah Journal of Science Vol. 38 (1),1-25, 2020

[2] P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer Berlin Heidelberg, 1992.

[3] E. Fadell and L. Neuwirth, Configuration Spaces., MATHEMATICA SCANDINAVICA 10 (1962)
111.

[4] R.Foxand L. Neuwirth, The Braid Groups., MATHEMATICA SCANDINAVICA 10 (1962) 119.

[5] E. Brieskorn, "Sur les groupes de tresses [daprés V. I. Arnold],” in Lecture Notes in Mathematics,
Springer Berlin Heidelberg, 1973, 21-44. .

[6] P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes,
Inventiones Mathematicae 56 (1980) 167-189.

[71 A. Hattori, Tolopogy of C» minus a finite number of affine hyperplanes in general position,
Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics 22 (1975) 205-
219.

[8] M. Jambu and S. Papadima, A generalization of fiber-type arrangements and a new deformation
method, Topology 37 (1998) 1135-1164.

[91 M. Jambu and S. Papadima, Deformations of hypersolvable arrangements, Topology and its
Applications 118 (2002) 103-111.

[10] R. P. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972) 197-217.

[11] H. Ali, A Topological Interpretation for Vanishing of Higher Homotopy Group of a
Hypersolvable Arrangement, t, J. Basrah Researches (Sci), 5 (2006) 414-433.

[12] A. Al-Ta’ai and H. Ali, The Broken Circuit Complex and Hypersolvable Partition Complex,, Thi-
Qar Sci 2 (2010)

[13] A. H. AL-Ta'a, H. M. Ali and M. A. Majeed, On the Orlik-Solomon algebra of a hypersolvable
arrangement, Basrah Researches (Sci) 36 (2009) 414-433.

[14] T. Zaslavsky, Counting the faces of cut-up spaces, Bulletin of the American Mathematical Society
81 (1975) 916-919.

[15] S. Yuzvinsky, Cohomology of the Orlik—Solomon Algebras, communication in algebras 23
(1995) 5339-5354.

[16] K. J. Pearson, Cohomology of OS algebras for quadratic arrangements, Lecturas Matematicas 22
(2001) 103-134.

dale 4 31 a Jgaa9aS | uadl (g o) gua 5 501 L 51 gag I ) o

o (o0 e slin Jsaia Glhde o) gad
ilaialy 1 anid / p glad) 418 / 5 ) daals

This article is an open access article distributed under 24

the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).



http://creativecommons.org/licenses/by-nc/4.0/

Basrah Journal of Science Vol. 38 (1),1-25, 2020

aliial)
Cua e - A ja U 5eS A(A) 1l 0 s sd gV ) Y1 L ol g0gS Al 52l sl 13 (£
1<k <r—-1XabadH (AA), ) xS paspadllaa, e 1<i<j<Pa=a;—q

This article is an open access article distributed under 25

the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).



http://creativecommons.org/licenses/by-nc/4.0/

