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Abstract

In this study, we suggest and analyze two new one-parameter families of an
efficient iterative methods free from higher derivatives for solving nonlinear equations
based on Newton theorem of calculus and Bernstein quadrature formula, Bernoulli
polynomial basis, Taylor’s expansion and some numerical techniques. We prove that
the new iterative methods reach orders of convergence ten with six and eight with four
functional evaluations per iteration, which implies that the efficiency index of the new
iterative methods is (10)Y = 1.4678 and (8)"* = 1.6818 respectively. Numerical
examples are provided to show the efficiency and performance of our iterative methods,

compare to Newton’s method and other relevant methods.
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1. Introduction:

A frequently occurring and most important problem in mathematics, science and
engineering is how to find the solution of nonlinear equations which can be expressed in general

as follows

f(x) =0, (1)
where f : D ¢ R — R isascalar function on an open interval D.

Since the numerical analysis is to devise algorithms that give quick and accurate answers
to mathematical problems for scientists and engineers, nowadays using computers. Therefore,

numerically iterative methods are often the only choice for solving this general problem.

The Newton’s method is one of the famous classical iterative methods to find the root of

equation (1). The iterative scheme is given by

f(xn)
Xp41 = Xp — f’(xr;) , n=0,1,.. 2

which it has quadratic convergence, [1]. In the recent past, much attention has been given to
developed several iterative methods for solving the nonlinear equations. Many of iterative methods
have been obtained by using different techniques such as Taylor expansion, decomposition,
homotopy, variational iteration, geometric methods and quadrature formulas also, we know that

quadrature formula plays an important role in the evaluation of the numerical integrals.

The first study of quadrature formula was by S. Weerakoon and T.G.l. Fernando in 2000,
studied new variant of Newton's method based on trapezoidal instead of a rectangle and they got
new two-step iterative method. It has third-order convergence, [2], defined by

_ f(xn) ,

yn = xn fl (xn)

2f (xn)

a1 =X = oo B0 L

By improving Newton’s method say, V. I. Hasanov et al. in 2002, modified Newton’s
method by approximate the definite integral in quadrature rule by using Simpson’s formula and
they obtained a new two-step iterative method with third-order convergence, [3]. G. Nedzhibov in
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2002, gave several classes of two-step iterative methods by using different quadrature rules, [4].
M. Frontini and E. Sormani in 2003, extended the results of the iterative methods in [2], and got
new two- step iterative method of order three independent of the integration formula, [5]. A. Y.
Ozban et al. in 2004, presented some new two-step variant of Newton’s method based on harmonic
mean and midpoint integration rule, [6]. H.H.H. Homeier in 2005, modified the iterative method
in [2] by using Newton’s theorem for the invers function and he got new classes of iterative
methods with cubic convergence, [7]. M. A. Noor in 2007, suggested new two-step iterative
methods also by using quadrature formula, [8]. L. Liu and X. Wang in 2010, proposed new three-
step iteration scheme by using the method of weight functions, [9]. M. A. Noor et al. in 2010,
suggested and analyzed some new iterative methods for solving the nonlinear equations using the
decomposition technique coupled with the system of equations, [10]. X. Wang and L. Liu in 2010,
derived two new three-step iterative methods based on Newton’s method and modified
Ostrowski’s method with an eighth-order convergence for solving the simple roots of nonlinear
equations by Hermite interpolation methods, [11]. A. Cordero and J.R. Torregrosa in 2011,
Presented a new three-step family of eighth-order methods obtained an eight-order convergence
based on Ostrowski’s method, [12]. J. Jayakumar in 2013, proposed a generalization of two-Step
Simpson- Newton's method where Simpson's integration rule is applied for approximating the
definite integral in quadrature formula, [13]. J. R. Sharma and H. Arora in 2014, presented a family
of three-point iterative methods for solving nonlinear equations, [14]. O. Oghovese and E. O. John
in 2014, introduced new two-step family of iterative method based on composite trapezoid rule
and fundamental theorem of calculus, [15]. O. Oghovese and E. O. John in 2014, proposed a new
three steps iterative method of order six for solving nonlinear equations, [16]. A.A. Al-Harbi and
I.LA. Al-Subaihi in 2015, a new family of three-step optimal eighth-order iterative methods are
presented, [17]. M. Saqgib and M. Igbal in 2017, used quadrature rule to approximate the definite
integral by rectangle integral rule and midpoint integral rule and they obtained new two-step
iterative methods, [18]. R. Thukral in 2018, proposed new three-step Simpson's type method
requires the same number of evaluations of the function as classical method but of fifth order
convergence, [19]. U. k. Qureshi in 2019, Suggested a new iterative method of order two which is
derived from quadrature formula by approximate the definite integral by using composite
trapezoidal rule and some numerical techniques, [20]. G. Sana et al. in 2020, introduced two new
three-step iterative schemes by applied quadrature formula and decomposition approach, [21]. B.

Neta in 2021, developed a derivative-free method with memory based on Traub’s method as the
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first step, [22]. C. Zalinescuin 2021, introduced several methods for comparing two convergent
iterative processes for the same problem, [23]. G. Sana et al. in 2021, suggested and analyzed some
new g-iterative methods by using the g-analogue of the Taylor’s series and the coupled system
technique, [24].

In this paper, we present new families of iterative methods for solving equation (1) by using
Bernstein integration formula to approximate the definite integral in the quadrature rule and we
find that some of well-known iterative methods can be deduced as special cases from the proposed
iterative methods. We approximate the higher derivatives in the new three-step iterative methods
to reduce the number of functions needed in each iteration to update the efficiency index. Also, we
introduce some numerical examples that confirm the theoretical results allow us to compare these
methods with Newton’s method and with other relevant methods. Moreover, we introduce the

graphical analysis for the uphold of numerical results.

2. Preliminaries

Offers some basic definitions, theorem and lemma that we need in our work.

Definition 2.1, [25]: A sequence of iterates {x,} is said to converge to the root « € R if
lim|x, —al = 0.
n-co

If x,,, Xp—1..., Xn_m+1 re m approximates to a root, then we write an iteration method in

the form

Xnt1 = (p(xm Xpn—1s++» xn—m+1)a (3)

where we have written the equation (1) in the equivalent form

x=¢x)

The function ¢ is called the iteration function. For m = 1, we get the one-point iteration

method

Xns1 = @(x,), n=012,.. (4)
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If o(x) is continuous in the interval [a, b] that contains the root and |¢'(x)| < c < 1in
this interval, then for any choice of x, € [a, b], the sequence of iterates {x,,} obtained from (4)

converges to the root of x = p(x) or f(x) =0.

Thus, for any iterative method of the form (3) or (4), we need the iteration function ¢(x)

and one or more initial approximations to the root.

In practical applications, it is not always possible to find a exactly. We therefore attempt

to obtain an approximate root x,,,, such that

|f (xne)| < € (5)
and/or
| X1 — Xp| < € (6)

where x,, and x,,, are two consecutive iterates and ¢ is the prescribed error tolerance.

Definition 2.2, [2]: Let f : D € R — R isascalar function on an open interval D with a simple
root a« of the nonlinear equation. An iterative method is said to have an integer order of

convergence p if it produces the sequence {x,,} of real numbers such that

for some A # 0 and p = 1, then p is said to be the order of convergence of the sequence, and A is

known as the asymptotic error constant.
or equivalently
Xnt1 —a = Al —a)? + 0((x, — a)p+1)

Notation 2.1, [2]: Let e, = x,, — a is the error in the n™" iteration. The equation

ens1 = cel +0(e}‘f+1) is called the error equation for the method, p being the order of

convergence.
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Definition 2.3, [13,2]: Let a be a root of the nonlinear equation and suppose that
Xn-1,Xn and x,,, are three successive iterations closer to the root a. Then, the computational

order of convergence (COC) denoted by p can be computed using the formula

_ Inleniq/enl
Inlen/en_1|

Definition 2.4, [19]: The efficiency of a method is measured by the index
1
E.l =po,
where p is the order of convergence and w is the total number of function evaluations per iteration.

Theorem 2.1, [17]: Let ¥,(x),¥,(x),..., ¥ (x) be iterative functions with the orders

Sy, S,,..., Sy, respectively. Then the composition of iterative functions

P(x) = Y1 () (Y2 (D) .. @r(2))...))
defines the iterative method of the order s;s,...s,.

Corollary 2.1, [26,27]: For a continuous function f(x)on [0, 1], we have

] ' dx ~ B ) = :1 1‘; i f (a +(b—a) %)
a k=0

3. Construct of New Iterative Methods

In this section, we construct new Newton-type iterative methods and their modifications

based on Newton’s theorem of calculus and Bernstein quadrature formula.
Let a € D be a simple root of equation (1) and x, is initial guess sufficiently close to a.

Consider Newton’s theorem of calculus, defined by
fO)=flxo) + [ /(D) d2 (7)

If we approximate the definite integral in equation (7), by using Corollary 2.1, we have

(x=%0) vm I ( k )
x) = f(xy) + = Xo+ (X —xp) — 8
FG) = o) + S22 5 £ (0 + (= x0) & ®)
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From equation (1) and solving equation (8) for x, we obtain

(m+1)f (x0)
- 9
Sy £ (xo+(e=x0)) ®

x:xo

Since the equation (9) is implicit we can overcome this by approximate (x — x,) in the right-hand

side by (—ﬁ ;f’(cx‘;))) we obtain

(m+1)f(x0) (10)

X = Xog —
O om . k ( fo)
Zizo (xo-ﬁa(mD

Also, we can get from equation (10) by using Taylor expansion of f' (xo —ﬁ%%), and
0

neglecting the terms of the third order and above, we have

1 !
X=X —— (m+ 2f(xo)kf (x0) (11)
(7 G0) - B ) ()

Now, by using equations (10) and (11), we can suggest the following new one-step, two-step and
three-step one-parameter family of iterative methods for solving nonlinear equation (1),

respectively.

Algorithm 2.1: For a given x,, compute the approximate solution x,,,; by the following iterative

method

(m+1)f (xn)
Xpe1 = Xp — - n=201,..
T e (o)

when g = 0 and m = 1, we get Newton’s method.

Algorithm 2.2: For a given x,, compute the approximate solution x,,, ; by the following iterative

method

(m+1)f(xn)f,(xn)
x =Xn —  n=0,1,..
T () - B e ) ()

when 8 =0 and m = 1, we get Newton’s method and also, when f =1 and m = 1, we get
Halley’s method in [28].
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Algorithm 2.3: For a given x,, compute the approximate solution x,,,; by the following iterative

method

_ _ f(xn) ,
yn - xn f’(xn)

(m+1)f(yn) ) n=20,1,..

m s _pkfn
k=of (y" Bmf’(yn))

Xn+1 = Yn —

Algorithm 2.4: For a given x,, compute the approximate solution x,,,; by the following iterative

method

_ _ f(xn) ,
yn - xn f’(xn)

(m+1)f(Yn)fl(3’n) , -01
ol om)” = BE rom) ' )} '

Xn+1 = Yn —

Algorithm 2.5: For a given x,, compute the approximate solution x,,,; by the following iterative

method
_ _ f(xn) ,
yn - xn f’(xn)
(m+1)f(yn)
Zn = YVYn —
" S kD)

f(zn)
Xne1 = Zn — s - n=0,1,..

Algorithm 2.6: For a given x,, compute the approximate solution x,,, ; by the following iterative

method

_ _ f(xn) ,
yn - xn f’(xn)

Z, =y — M+ Yn)f ) ,
T ((Fom) - B ! v}
f(zn)
Xn+1 = Zp — 1z ' n=20,1,..
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Since the purpose of our research is to obtain an efficient three-step iterative methods of higher
order of convergence for solving equation (1), so we depend on Algorithms (3.5) and (3.6).
Furthermore, to update the efficiency index of our iterative methods so, we approximate the
derivatives f'(y,), f"" () and f'(z,) respectively, to reduce the number of functional
evaluations needed in each step of iteration by using an orthogonal polynomial as basis. This idea
is very important and plays a significant part in developing many iterative methods. Now we look

for an approximation of f'(y,,), f" () and f'(z,) respectively.

Consider the function

Q) =Xj=oa Bi(t — &) (12)
where &, € {xn, ¥n, 2n}, a;,j = 0,1, 2, ..., 7 are unknowns to be found, and

B;,j =0,1,2,..,r are forms Bernoulli basis polynomial, defined by

Bo(t— &) =1, Bi(t = &) = (t = &) =5, Bo(t = &) = (¢ = &) — (¢ — &) + g and

By(t — &) = (t = &% =2 (6 — &) + (¢ — &), &n € (X, Y 20

To approximate f'(y,) we construct a Bernoulli interpolation polynomial, that meets the

interpolation conditions

fn) = Qxn), f(xn) = Q"(xp) and f(yn) = Q(yn)-

Here, take r = 2 and &,, = y,, and from equation (12), then Q(t) can be written as:
Q1) = agBo(t — yn) + a1B1(t — yn) + a2 B2 (¢ — yn).

Applying the interpolation conditions above on Q(t), we get

fOn) =ap+ a4 ((xn = Yn) — %) +a; ((xn - yn)z — (X — ) + %),

1 1
fOm) = ag S tZay,

') = ag + a,2(x, —yn) — 1),
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Solving the system above of three linear equations of three unknowns, we obtain

ap = f(xp) — ((xn —Yn) — %) a; — ((xn - yn)z — (=) + %) az,

a, = (= V@) + (G5 — ) fOw) + (55— 1) £/ (), and

Xn—Y¥Yn (xn Yn)z Yn

—_ 1 1 !
ap = w(f(%z) —fle)) + - }’nf (xn).

(xn

After substituting the values of a, and a, in equation f'(y,) = a; — a,, we get

f'om) == (s ) (13)

Also, to approximate £ (y,,) we construct a Bernoulli interpolation polynomial, that meets the

interpolation conditions

fGn) = Q). f(yn) = Q) and f'(yn) = Q"(yn) -

Take r = 2 and &,, = y,, and from equation (12), then Q(t) can be written as:

Q(t) = agBo(t — yn) + a1 B, (t — yu) + axB,(t — yy).

Again, applying the interpolation conditions above on Q(t), we get
f(xn) = a0 + <(x" —¥n) - %) + a5 (Gtn = y)? = (= y0) +3),

1 1
fOm) = ag ! +ga21

f'Om) =a; —a,.

Then by solving the system above of three linear equations of three unknowns, we obtain
1 " 1
ao = f(xp) — ((xn —Yn) — E) a; — ((xn — V)" — (X —yn) + g) a,,

- yn))aZ' and

a, = —

fOn) = e fOn) = s f O):

a, =

(Xn—Vn)? (x ~¥n)
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After substituting the values of a, in equation "' (y,) = 2a, , we get

2

f”(yn) = (—(f(xn) - f(yn)) - Tiyn)Hl(xn' yn) = Hz(xn: yn) . (14)

Xn—Yn)?

Finally, to approximate f'(z,) we construct a Bernoulli interpolation polynomial, that meets the

interpolation conditions

fO) = Q). f(yn) = Qyn), f(2n) = Q(zy) and f'(xn) = Q" (x).

And take, r = 3 and &,, = z,, and from equation (12), then Q(t) can be written as:

Q(t) = agBy(t — z,) + a1 B1(t — z,) + ayB,(t — z,,) + azB;(t — z,).

Also, by applying the interpolation conditions above on equation Q(t), we get

Fin) = g +ay (G = 20) =) + a2 (G = 20)% = Gt = 20) +2) + @5 ((an = 2)° -
2t = 20 + 200 = 7)),

FOw) = ao+ a3 (On = 2) = 2) + @ (O = 20 = On = 20) +2) + a5 (0 — 2)° -
20—z + 10—,

f(z) = ag— a1 +=ay,
f1n) = a1 + @200 — 20) = 1) + @5 (30t — 2)? = 3060 — 20) +3)-

Solving the system above of four linear equations of four unknowns, we obtain

ay = f(x,) — (a—%)al — (a2 — a+%)a2 — (a3 —zaz +%a)a3,

a, = ﬁ(f(yn) —f(xp)—(b+a—1Da, - (b2 + ab + a? —g(b +a) +%) as,

42 = ﬁ(f(zn) = fl)) + ﬁ(f(yn) — f(xn)) — (b +a-— g) as, and

1

az = — a(b_a)f’(xn) - ale (f(zn) = fxn)) + b(b—ia)z (FO) — f(xp),
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where (x, — z,) = aand (y,, — z,) = b.

After substituting the values of a4, a, and a5 in equation f'(z,) = a; —a, + §a3, we get

I f(xn)—f(2n) F(yn)—f(xn) Fn)—f(zn) Yn=2Zn ((F(Yn)—f(xn) r
£z =2( - )+ + 2t ( — f'(n)) =

Xn—Zn Yn—Xn Yn—Zn Yn—Xn Yn—Xn

H3 (xn: Yn Zn) (15)

Therefore, we suggest new three-step one-parameter families of iterative methods free

from second derivative for solving nonlinear equation (1) as follows:

Algorithm 3.7: For a given x,, compute the approximate solution x,,,; by the following iterative

method
= L
Zn =Yn — szl_of,&l:;)ézyn’)r@n) )) |
= m\Hq(xnyn)
Xn+1 =Zn—% n=0,1,..

Algorithm 3.8: For a given x,, compute the approximate solution x,,, ; by the following iterative

method
_ _ f(xn) ,
yn - xn f’(xn)
Zy = Yy — (m+1)f (yn)H1 (Xn,¥n) .
" " Zl:o{(Hl(xnrYn))z -B %f(Yn)Hz(xn:Yn)}
_ _ f(zn) , _
Xnsi1 = Zn e Gty n=20,1,..

4. Analysis of Convergence

In the following Theorems, we establish the convergence of the present Algorithms (3.7)

and (3.8) respectively, when m = 1.
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Theorem 3.1: Let ¢ € D, be a simple root of a sufficiently differentiable function f:D c R —
R for an open interval D. If x, is sufficiently close to a, then the Algorithm 3.7 has tenth-order

convergence when =1, while its convergence of eighth order forany g € R — {1}.
Proof: Let a be a simple root of f(x) = 0. (Since, f(a) = 0and f'(a) # 0).

Expanding f (x,)and f'(x,) by using Taylor expansion about «, we get

flxn) = f'(@)]en + coef + czei + 0(ep)] (16)
9@
Where ¢, = @ ST 2,3,... & e, =x,—a.From (23), we have

f'(x) = f'(@)[1+ 2c,e, + 3cze2 + 4cgel + 0(er)] (17)
Dividing equation (16) by (17), we get

f(xn) —
f'(xn)

en — Ce2 +2(c2 —c3)ed + (—3cy + 7cyc3 — 4c3)ep+.... (18)
Also, we need to compute
VYo = a+ cyel +2(c; —c2)ed + (3cy, — 7cyc5 + 4c3)ef+. .. (19)

Expanding f(y,) and f'(y,) about a and using (19) we have

fOn) = f'(@]czef + 2(c3 — c5)es + (Bcy — 7czc3 + 5¢3)en+... (20)
') = (@)1 + 2c2e2 + 4(cyc3 — c3)ed + (6¢c,cq — 11c2c3 + 8¢5)ep+... ] (21)
Hy (o, y) = f1(@)[1 4 (2¢5 — c3)ei + (6¢,c3 — 2¢4 — 4¢3)e+... ] (22)
£ (0 = B7EEES) = F(@I1 = 2¢3(B = e + 4ey(cF = ¢5)(B — Dei+...] (23)
Zp=a—c3(B—1e} +4c2(c? —c3)(f — Des+... (24)

Expanding f(z,) about a and using (24) we have

f(zn) = f'(@)[=c3 (B — Den + 4ci(ci — c3)(B — Dex+...] (25)
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H3 (X, Y, 2) = f(@)[1 + (=2Bc3 + 2c5 + coca)ep + (B(B — 1)c3 — 8czc3 (B — 1) —
2¢2c, + 2c,05 + 2c5¢)en+. .. ] (26)

Dividing equation (25) by (26), we get

[@n)  _ f1(a@)[—c3(B — 1)et + 4c2(c2 — c3)(B — 1)eS+...] (27)

H3(cn,ynizn)

From equations (18), (20), (21), (23) and (27) we obtain

Xner = @+ cHB = DB~ 1) — el =836 — D (B~ Def — s} (B~ 1) -

G) cicy + G) CyCs + G) c3c4) e, + 2cy ((,83 + 158% — 34 + 18)c] — G) c3 (ﬂz +
68

(?)ﬁ - 24) (B —1c; + (5 (,6’2 — (%)ﬁ + i—i)) cics +(12(B— 1) (crfﬁ —cZ+

()2 +((pea+ (-G)e+ (F)ac)p - (F) e+ (o) -

(68 — 1) (caes + (5) c2) e — 6cZea (B — 1)) ei® + 0(eih) (28)
Implying that
ens1 = c3(B = D(F(B — 1) = cy) ef + -+ 0(ep) (29)

When S = 1 we have
— 4 4 1 2) 010 4 (ell 30
ent1 = €2 | CaCz —5C3C4C5 ) € + (en’) (30)

Hence, Algorithm 3.7 has at least tenth-order convergence.

Theorem 3.2: Leta € D, be a simple root of a sufficiently differentiable function f:D c R -
R for an open interval D. If x, is sufficiently close to a, then the Algorithm 3.8 has at least eighth

order of convergence for any 8 € R.
Proof: With the same assumptions of the previous theorem, we have
Hy (%, V) = 2¢5 + 4cse, + (2¢,¢5 + 6C4)e2+... (31)

Zp = a — (c3(B — 1)+c3)cpen + (46 — 4)cd + (—6B + 8)cicy — 2¢,¢4 — 2¢5)e+...  (32)
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Expanding f(z,) about a and using (29) we have

f(z) = f1(@[=(c3(B = D+es)crel + (48 — 4)ct + (=68 + 8)ces — 265, —
2c®e+...1  (33)

Hs Gtn Y 70) = (@) [1 = 262((8 = 1) + ca05 = Jea)el + (8(F — 1)ef + (—126 +
16)c;¢3 — 6cZcy + (—4c3 + 205)c; + 265¢,)ef+... | (34)

Dividing equation (30) by (31), we get

LB = (@) —cp((B — D) + cadeit + (4(B = 1)cf + (=68 + 8)escd — 2c,¢4 -

2c)es+...] (39)

Substituting equations (18), (20), (22), (31) and (35) in Algorithm 3.8 we get

Xpny1 = QA+ ((ﬁ —1)cs + 03)((3 —1)c3 + cpc3 — C4)C223rsz + 0(ey) (36)
Implying that
ent1 = ((B—1)c3 +c3)((B— 1)c3 + cy03 — cy)ckel + 0(ey) (37)

When 8 = 1 we have

ens1 = (€203 — cy)c3cies + 0(ey)

(38)
Hence, Algorithm 3.8 has at least eighth-order convergence.
5. Numerical Examples

In this section, we apply new three-step iterative methods that defined in Algorithms (3.7)
and (3.8), to solve several nonlinear equations and make the comparison of newly established
iteration methods with classical Newton’s method [1], S. Weerakoon et al method [2], and with
some existing optimal eighth order methods. For example, R. Thukral method [29], L. Liu et al.
method [9], X. Wang et al. methods [11], A. Cordero et al. method [12] and one of the methods
by A.A. Al-Harbi [17]. The methods are given as follows:

This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution- 369
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).



http://creativecommons.org/licenses/by-nc/4.0/

Basrah Journal of Science Vol. 39(3), 355-383, 2021

Newton’s method (NM) :

f(xn)
Xni1 = Xn Tray T 0,1, ..

S. Weerakoon et al. method (WFM) :

_ _ f(xn) ,
yn - xn fl(xn)

e 2fw)
T faa) + 1 Om)

=0,1,..

R. Thukral method (TM) :

_ _ f(xn) ,
yn - xn f,(xn)

_ Fa) +om)”
(f(xn)—f(Yn))f’(xn)

Zp = Xn

2
_ _ f(zn) 1+ﬂi2 _ N2 _ 33 f(zn) 4f (zn) _
bl = 20 T i) [(1_#i) 2()" = 6(u)” + om T T 0.1,..

f(n
where p; = f,(’;n)).

L. Liu et al. method (LWM) :

_ _ f(xn) ,
yn - xn f’(xn)

f(xn) f(yn)
Flen)=2f () f'(xn)

Zpn = Yn —

£z [( £ -Fm) \? f(zn) 4f (z,)
_ =01,..
1 = Zn TG [(f(xn)—Zf(yn)) o1 @) T FCa+Bf @ |’ 0,1

where 8 = u = 1.
X. Wang et al. methods (BM8 and BM8-2) :
(BM8):
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_ _ f(xn) ,
Yn - xn f,(xn)

flm)
T T G,

f(zn)
Xp41 = Zp — s - n=0,1,..

(BMS-2):

_ _ f(xn) ,
yn - xn f’(xn)

_ _ fyn)
“n = Yn 2f [xnynl=f"(xn)

£(zn)
X =z, — n=20,1,..
LTI o f izl V0 Zn] ~2f [Xn Y]+ U —2n) f[Vn Xn Xn]

A. Cordero et al. method (CTM) :

— _ f(xn) ,
Yn = xn f,(xn)

_ fOen)—flym) f(xn) ,
n fen)=2f(yn) f(xn)

Zn =

_ _ f(zn) 3(B2+B3)(vn—2zn) , —
X+l = Vn = G B onam +a Om—x tBen ey P Ol

Where ﬁl = 0, ﬁz =1and ﬁg =0 and

o few) [(fen)-fOm) 1 fzn) 2]
Vn =2 T e [(f(xn)—Zf(yn) 2f(yn>—2f<zn>) '
A. A. Al-Harbi et al. method (ASM) :

— _ f(xn) ,
yn - xn fl(xn)

7 = _ fm)—f(xn) f(xn) ,
n ™ 2f ()~ fCen) ' ()

f(zn
Xne1 = Zn = (L + 268 +put]) + (=1 + Bta) + (1 + 263 +ye3)} -2
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n=0,1,..
—1p= _ _fom) . _ f@n) _ S
wherey =1, =0andy = —2and t; o) ty Ton and t3 oy

For writing programs, we use Maple 2016 program with 1000-digit floating point arithmetic
(Digits: = 1000). We use the stopping criteria |x,.; — x| < €and |f(x,4+1)| < &, where ¢ =
107>, for computer programs. Different test functions and their approximate root « found up to
the 28th decimal places are given in Table 1. Table 2 shows a comparison between the various
iterative methods depending on the number of iterations (IT), the values of |x,,1 — x,|
and |f (xn4+1)| and computational order of convergence (COC). Figures (2.1- 2.8) show the

graphical analysis for the uphold of numerical results.

Table 1: The test functions and their root «

f(x) a
1] fi(x) =x° + 4x2 — 15 1.6319808055660635175221064455
21 ) =(x—-1)%—1 2.0000000000000000000000000000
3 i) =x—e* 0.7728829591492101128487486048
41 £,G0) = (1 + cosx)(e* — 2) 0.6931471805599453095377829940

() = sinx — ; 1.8954942670339809471440357380

6 1,2 X 0.5948109683983691775226562351
= —1)—Z+1
fo(x) = sin™ " (x ) > +

71 f(x) =(sinx)? —x?+1 2.0000019101432763850749104202
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Table 2. Comparison our iterative methods with Newton’s method and relevant various methods

f(x)| xo Methods IT | X541 — Xnl lf (Xn+1)] CcocC

fi | 19 NM 5 4.7627717e-16 2.0179551e-30 2.0000070
WFM 4 3.5538378e-26 1.9121725e-76 2.9997779

™ 3 | 7.11868510e-22 6.7158442e-106 4.8688477

LWM 3 1.2777913e-56 2.2612305e-448 7.9411776

BMS 3 3.8860695e-63 2.6388788e-501 7.9592052

BM8-2 3 2.1273196e-65 1.1467258e-519 7.9633384

CT™M 3 7.8460648e-62 1.0680800e-490 7.9548448

ASM 3 | 7.71083310e-59 2.2975939e-466 7.9419739

NBM 3 | 4.8981129e-143 0.0 11.9628371

NBM1 3 1.4736548e-72 7.9792114e-578 7.9792114

f, | 18 NM 6 3.0908727e-21 2.8660481e-41 2.0000004
WFM 4 4.8567907e-17 4.0097399¢e-49 3.0037564

™ 4 1.2301362e-47 4.5069838e-234 5.0041787

LWM 3 4.8376766e-34 4.5997183e-266 8.1771117

BMS 3 9.5534938e-42 2.0817044e-328 8.1048138

BM8-2 3 2.5437487e-45 2.3373966e-357 8.08560810

CT™M 3 2.8011765e-40 1.3478179e-316 8.1326889

ASM 3 2.0337759e-35 2.7318796e-277 8.1892898

NBM 3 1.3599031e-95 0.0 12.0908695

NBM1 3 4.4756985e-53 5.3674172e-420 8.0212447

fi | 35 NM 9 6.5470578e-20 8.9491765e-39 2.0000016
WFM 6 1.9993598e-16 1.9761660e-47 2.9966706
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™ 5.6254001e-47 4.5689177e-231 4.99626010
LWM 4.4125419e-29 3.9927632e-227 7.7982095
BM8 3.97083810e-39 8.1562120e-308 7.8800229

BMS8-2 7.1398043e-47 1.7077867e-370 7.9632156

CT™M 7.1286254e-40 3.7426175e-314 7.9329018

ASM 1.4220098e-33 3.6783273e-263 7.8247620

NBM 3.7317121e-125 0.0 9.8812164

NBM1 1.8366324e-95 5.3992020e-759 7.9967565

fa | 09 NM 1.9230803e-29 1.8170046e-58 1.9999999
WFM 1.8175039¢e-31 2.0473423e-93 2.9999130

™ 1.8803857e-36 9.27421034e-181 4.7726412
LWM 5.4674051e-82 5.2221645e-653 7.8238898
BMS8 3.6612034e-118 = 1.13663377e-945 7.8148441

BM8-2 5.0785010e-89 2.4383002e-710 7.8705503

CT™M 2.4828066e-72 1.1379207e-575 7.9379761

ASM 6.8395375e-89 6.3437628e-709 7.8293396

NBM 1.2206835e-145 0.0 9.8772847

NBM1 5.1313716e-89 2.6481682e-710 7.8706139

fs | 20 NM 1.7664965e-20 1.4787271e-40 1.9999997
WFM 6.9218142e-35 8.2109603e-104 2.9999649

™ 1.1448151e-27 1.1529071e-135 4.9292808
LWM 1.0543348e-69 4.6254912e-553 7.9618721
BMS8 1.8860406e-80 2.8462341e-640 7.9718217

BM8-2 7.4215447e-80 1.8459664e-635 7.9733717
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CT™M 3 1.0683158e-75 1.0583247e-601 7.9677030
ASM 3 8.5875488e-73 4.0972561e-578 7.9630357
NBM 3 5.6305868e-131 4.0e-1000 9.9793032
NBM1 3 1.5961638e-100 7.9898120e-803 7.9512710
fe | 0.3 NM 5 2.3916069¢-19 1.6107744e-38 2.00000910
WFM 4 1.5267255e-25 7.2841117e-76 2.9997002
™ 3 7.0798766e-27 8.7741676e-134 5.05203810
LWM 3 1.3240055e-59 5.6416104e-474 7.9104307
BM8 3 6.1558807e-77 2.0560733e-614 7.9112957
BMS-2 3 6.6289185e-66 5.7572363e-525 7.9018207
CT™M 3 5.3278165e-61 1.9435254e-485 7.9366747
ASM 3 5.0701651e-72 9.5018919e-575 7.9343293
NBM 3 3.5116305e-108 3.0e-1000 9.9351292
NBM1 3 1.1274703e-65 4.7650905e-523 7.8942633
f7 | 15 NM 5 4.4131593e-19 3.7884542e-37 2.0000007
WFM 4 1.8211104e-31 9.8628863e-93 2.9999346
™ 3 9.9397361e-26 5.1884889¢-125 4.9257651
LWM 3 2.3530759¢-66 3.5837479e-525 7.9648201
BM8 3 1.8248762e-74 5.5373256e-591 7.9724181
BM8-2 3 6.3807720e-77 6.2926145e-611 7.9760834
CT™M 3 3.8163135e-72 3.6529135e-572 7.9717647
ASM 3 5.14822910e-69 9.8364499e-547 7.9641333
NBM 3 6.4745225e-122 0.0 9.90818428
NBM1 3 2.2780807e-86 1.8964177e-687 7.9659951
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Figure 1: Log of residuals of problem 1
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Figure 2: Log of residuals of problem 2
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Figure 7: Log of residuals of problem 7

Js 7 55 s f s {

Figure 8: Comparison between methods and efficiency indices

Efficiency index
= = = P=} — —_ —
=] [ . =3 - — [ i =N
‘_

This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution- 379
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).



http://creativecommons.org/licenses/by-nc/4.0/

Basrah Journal of Science Vol. 39(3), 355-383, 2021

5. Conclusions

In this research, new predictor-corrector iterative methods have been proposed for solving
nonlinear equations denoted by (NBM) and (NBM1), respectively. Our new iterative methods have
the advantage of evaluating only the first derivative of f(x). Numerical results that we got show
the convergence order of (NBM) and (NBM1) methods is ten and eight respectively, which is
higher than many existing methods. Also, the number of iterations of (NBM) and (NBM1) methods
is better than the classical Newton's method, S. Weerakoon et al. method and equal with other
existing methods. The efficiency index of both new iterative methods is much better from the
classical Newton's method, S. Weerakoon et al. method and (BM8) method and the efficiency
index of (NBM1) method is equal with all the existing methods but, the efficiency index of (NBM)
method is less. However, the drawback in the efficiency index of (NBM) method is compensated
by increase in accuracy. Moreover, the proposed (NBM) and (NBM1) methods have large
computational order of convergence (COC) than all the existing methods which sign that our newly

proposed iterative methods are well-matched to inspect the roots.
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