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1. Introduction

In this study, numereical investigation of compressible Newtonian laminar flow is conducted
based a Galerkin finite element (GFEM) method. Here, compressible Newtonian equations are
expressed as a combination of two differential equations; called continuity and time-dependent
conservation of momentum equations. These equations are presented in this study in cylindrical
coordinate system (Axisymmetric flow) (for more details see [1]). Particularly, the effects of
compressibility occur in both gases and liquids through the variation of density. Density itself
depends on temperature, pressure and concentration levels of fluids [2]. Flows of liquid
materials, at moderate pressure levels, can be considered as incompressible. Nevertheless, at
large pressure-differences, such flows may display some mild compressibility effects. Mach
number, the ratio of fluid velocity to the speed of sound (Ma =u/c), characterizes the influence of
compressibility on a flow field [3-4]. Flows at low Mach number may be described as
incompressible, whilst for those at moderate to high Mach number, compressibility effects will
be prominent. Recently, compressibility plays an important role in some applications such as:
steam turbine, polymer extrusion, injection molding with polymer melts and exploration of
petroleum (for more details see [5-8]). Moreover, in capillary rheometry, compressibility may
have a significant influence on features such as the time-dependent pressure changes within a
system (see piston-driven flows [9]). Extensive literature studies on the computational solution
of flows that manifest compressibility effects have been conducted. In this context, the finite
element method played essential role for solving various problems. Under this method, different
techniques have appeared such as Streamline-Upwind/Petrov-Galerkin (SUPG) algorithm,
Galerkin Least-Square (GLS) and Taylor-Galerkin/ pressure-correction scheme (TGPCM) [10-
11]. In this context, one can see various investigations of the compressible flows that have been
conducted based on finite element methods. In addition, the numerical investigations of
incompressible Newtonian flows on the structure of the incompressible through a channel have
been widely conducted compared to (see for example [12]). In contrast, one can see that a few
numerical studies related to compressible axisymmetric flows past a channel have been
introduced due to the extreme difficulties. Thus this study is concerned with the investigation of

this type of flows.
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The main difficulty in developing a numerical algorithm to treat the compressible flows comes
from that the differential equations turn to a hyperbolic-parabolic system, while those for
incompressible flow are an elliptic-parabolic. In addition, the compressible equations for low
Mach number may be associated with large disparity between the acoustic wave-speed, (u + c),
and the entropy wave convected at the fluid-speed, (u) [13-15]. Here, the condition number for

the equation system is related to the reciprocal of the Mach number.

The present study aims to present a study on the compressible Newtonian fluid with a
constant viscosity. The novelty here is to study the temporal convergence-rate of the system
solution that is taken to be steady state, compressible, axisymmetric, and laminar, which did not
address by researchers previously. In this context, Poiseuille(Ps) flow along a two dimensional
planar straight channel, under isothermal condition is studied. The main results of current study
focused comparison against incompressible counterparts in the temporal convergence rates for
the components of the solution. Furthermore, the rate of covergence for three different meshes
are compared. Numerical treatments are presented for governing system, where we have utilized
the Galerkin finite element. The unequal order primitive variable of velocity components and
pressure will be employed as the main approach. For the numerical solution, the iterative method
of Newton-Raphson will be used to solve the set of non-linear equations and the backward
different scheme will be employed as the time-integration approach to deal with the time
dependent term. In the next section, the governing equations of the Newtonian flows are
introduced in the cylindrical coordinates. Since these equations must be studied numerically, the
numerical method is characterized in Section 3. The problem discretisation and the related

numerical results are presented in Section 4 and 5, respectively.
2. Mathematical modeling

The dimensionless form of continuity and momentum equations of compressible Newtonian
flow under isothermal condition and omitting the body forces can be given in cylindrical

coordinates as:

This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution- 341
NonCommercial 4.0 International (CC BY-NC 4.0 license)
(http://creativecommons.org/licenses/by-nc/4.0/).



http://creativecommons.org/licenses/by-nc/4.0/

Basrah Journal of Science

Vol. 39(3), 339-354, 2021

6p

% 122 (oru) + 22 (pug) + 2 (pu,) = 0. (1)
r-direction
U, U, Ug 0U;- U, UgUyg
p(at+UTar+rae+Uzaz r)
_Op | 4p0%Ur | 4u0Ur  4p p 0%Ug  4p 0Ug
- or 3 0r? 3r or 3r2 T 3r9roe 3r2 060
u 9%u, 0%U, , uo%u, uoU,
T r2 062 TH 0z2 30roz r? or (2)
O-direction
ou aU Ug 0U ou U, U
( 9 + £ Ye 9 +UZ 9 r 9)
ar r 0z r
10p . p 02U, , 7u 0U, . 4u 0%Uy
T rae  3roarad  3r2 90 = 3r2 962
u 02U, 9%ug 0%ug , udlyg
+3r696 tu 0z2 tH or? + r or r2 Ue (3)
z-direction
au, U, 4 Us U, U,
p( +Ur6r r66+Uzaz)
_ O _ 2wy | Uy k0% | 41 0%U
- 0z 3 0rdz  3r 0z 3r 000z 3 0z2
02U o%U 22U ou
_I_‘u z z L z HOUz (4)
ar? drdz 12 002 r or

Where, u,., ug and u, are the velocity components in r-direction, 8-direction and z-direction,

respectively, p is the pressure and p is the fluid density (for more details see [16-22]).

3. Numerical method

In this study, Galerkin finite element method (GFEM) is used to solve the related governing

equations (2)-(4). This approach begins with finding the weak

form of the continuity and

momentum equations by using appropriate weight functions, then integrating over a typical

domain and substituting assumed approximate solutions, to get the the following matrix form
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[M][U;] + [C-(UDIUy] + [C,(U)][Ur] = [Col[Up] — [Qr]lP] +§[Krr] + % [Kr][Ur] +

~[4:11U] + (K, ][Ur] + % [Ky,1[U,] = [0] (5)
[M][Ug] + [C+ (U][Ue] + [C,(UNI[Us] — [C:1[Up] + [K;,1[Up]+[K, 1[Us] + [K,1[U] + [96][Us] = [0]
(6)

[MI[U,] + € (U, + [C, UV, = [Q)0) = 2K [V, + 2 (K110, + 2 [, 10,]
K, 11U, + (K, 11U, + (K (U] = [0] (7)
(Mpllp] + [Q:11U,] + [ax]lp] + [S1[U,] + [Q:1[04] + [a2]lp] + [Q31LU,] + [45][p] = [0]

®)
where,

[Q] = [C- (U] + [Co(e)] + [C,(U)] + [Qr] + [Qo] + [Q2] + [K22] + [Ki] + [Kir] + [Kz]

Here, the quadratic shape functions that proposed for velocity components can be defined as:

1] [LA—Lila—Lils] 1 0 0 -1 0 —19Lt

IIJZ L%_L2L3_L2L1 01 0 -1 -1 O L%

Wa| _ L3 —Lsly —L3lp| |0 O 1 0 =1 —1}4;3 _ (9)

Yy 4L,L, 0 0 0 4 0 0 ||LiL,

Ys| |4L,L, 000 0 4 0 (|LLs

Yel 41,1, 0 0 0 0 0 4 L]

In contrast, a convenient linear shape function is proposed for pressure and density, such that

$171 [l
2| = [L2] - (10)
¢3 L3

where, L4, L,, and L4 are local triangular coordinates.
Correspondingly, we can dfine the matrices of the above system as follows:
The mass matrix is given by:

[T] = 2mn, A[K][M][MT][KT].
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And the convective matrices can be expressed as:
[Y, (U] = 2rn, AIK][M][MT][KT][U,][NT][BTI[KT] .
[Yo(Ug)] = [O] .
[V, (U] = 2mrn AIK][M][MT][KTI[U,]INT][CT]IKT] .
[S-(Up)] = 2mA[K][M][MT][KT][U][MT][KT] .
[Se(Ug)] = —2mA[K][M][MT][KT][Up] [MT][KT].
Also, the diffusion matrices are gathered as:

[Hy] = 27, A—[K][B][N][NT][BT][K"]

[Ho] = [0]

[H,] = 2mn,A— [K][C][N][NT][CT][KT]

The gradient matrices are given by:
[F] = 2nn1,A[K][B][N][N"]
[Fo] = [0]
[F,] = 2nr, A[K][C][N][NT]

[F,] = 2mA[N][MT][KT]

[E’”:H 3-3[2] ea- H
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13),

where, A is the area of the triangular element and r;,, = E (rh+nrp+
3
and
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Ly
[N] = Lz]
Ls
0
0
2y3
0
V2
Y1 A

i.j =1.2.3 are coefficients defined in terms of coordinates of triangular

element. In addition, to complete the numerical building the Newton-Raphson method has been

used to address the nonlinear part based on the system backward Eu

this context, the system of equations is given by:

aRl aRl aRl 6R1

9R,

ler scheme (see [23,24]). In

[T1[0-1 + 52118V, ] + [55H11AUp] + [5211AU,] + [SAIAP] + [521[80] = —[Ry] (11)
[T1[06] + 521U, + [521[AU] + [521[AU, ] + [SEAP] + [5E1[Ap] = ~[R;] (12)
[T1[0,1 + [SE21AU,] + [5218Up] + [521[AU, ] + [S21[AP] + [521[8p] = ~[Rs] (13)
[T1PT + [55211AU,] + [541[AUG ] + [S211AU,] + [S21[AP] + [5218p] = —[R4] (14)
Where,
4 4 4
Rl = [Cr(Ur)][Ur] + [CZ(UZ)][UT] + § [Krr] [Ur] + § [Kr] [Ur] + § [qr]
[Ur] + [Krr] [Ur] + [CB][UH] + § [Krz] [Uz] - [Qr] [P] (15)
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Ry = [Cr(U)][Ug] + [C,(U)][Ug] + [Cr1[Ug] + [K,21[Ug] + [Krr]

(U] + [K; 1[Ug] + [g; (U] (16

Ra = 2 (K201 + 5 (K11, + (G (UDIUs] + [GUIIV:] +
€UV + 4 K[V + (Ko IV + (KLU + (K (U]~ [Q211P) e
Ry = [Q:)1U,] + [S](U,] + [QallUs] + [ax](p] + [gs]lo] (18

such that, [Q] is reduced to the form:

[Q] =[G (U] + [Co(Ue)] + [C,(U)] + [Qr] + [Qo] + [Q]

+[Kz2] + [Kr] + [Kpr] + [Ko] (19)

4. Problem discretization

In this article, the problem of the flow is selected to be a 2D channel connected to upstream and
downstream cylinders. In this context, a Poiseuille flow through a 2D-axisymmetric channel
considered, for an isothermal, compressible Newtonian fluid. Three finite element meshes, M; =
10 X 10, M, = 20 x 20 and M3 = 30 x 30 are used for this purpose (see Figurel(a),(b),(c)).
The results are shown for tolerance criteria taken as TOL = 10719 and typical At is 0(1073).

Mesh characteristics are introduced in Table 1.

Table 1: Characteristics of the achieved meshes.

Mash  Total Element Total Nodes Boundary Nodes Pressure Nodes

M1=10x10 200 441 80 40
M2=20x%20 800 1681 160 80
M3=30%30 1800 3721 240 120
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(a) 10x10 (b) 20x20

(c) 30x30

Figure 1: Structured (a) 10x10, (b) 20x20 and (c) 30x30 finite element meshes.

Boundary conditions (BCs):

The BCs of the present problem can be define as (see Figure 2):

The setting of BCs of the present channel problem is laid as follows (see Figure 2):
1. Zero radial velocity is applied at the inlet, outlet and centerline of the channel.
2. Poiseuille(Ps) flow is applied at the inlet.

3. Along with the outflow, zero pressure is applied.
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VA A A S

u, =0

= ’ u.=0
u .= Ps Flow :

" P=0

Centerline

Figure 2: Schema for flow problem and boundary conditions.

5. Numerical results

The numerical results concerned with the rate of convergence of the problem under
consideration by using a Galerkin finite element method. The rate of convergence for axial
velocity and pressure components for compressible and incompressible cases are presented in
Figures 3 and 4 based on three different meshes and Re=1. From the findings, one can see that
for both cases there is clear differences in the level of convergence of velocity for the three
meshes (see Figure 3). In addition, the velocity convergence in a compressible fluids is higher

than its counterpart in an incompressible.

10°g 3 10° 2
10k 1 10" 3
e Mesh_10x10 ] LF Mesh_10x10
Mesh 20520 3 107k Mesh 20520 7

10° Mesh 30x30 10°k Mesh_30x30 ]
_'E , e _ 10 ; ]
e Incompressible = Compressible E
F10°L . £10° 3
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10 4 T10°k 3
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Time-step Time-step
(a) (b)

Figure 3: Convergence of velocity; (a) Incompressible, (b) compressible variation, Re=1.
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Again the pressure convergence is provided in Figures 4 for both compressible and
incompressible cases based on three various meshes and Re=1. Here, the same featuere of
velocity convergence is observed in the pressure case. There, in both situations with a higher

level of convergence in a compressible as compare with an incompressible as well.

10° 10°
10" E 10" _
i Mesh 10510 ] JE Mesh 1010 ]
Mesh_20x20 7§ 107 Mesh 20520 3
10° Mesh_30x30 ] 10k Mesh_30x30 ]
16" ) £ 10° _ i 3
= Incompressible — Compressible
=1 . a0 L 3
E 10 E 10 :
10° . 0L 3
107 107 ¢
10° 1 10°F 3
10° ] 10°E :
(AR A, VO EA RN L VIR ER I T i i{}'“‘:----'---""""""""""""""'_
0010001300 30003500 3900 0 2000 4000 6000 8000 10000 12000 14000 16000
Time-step Time-step
(a) (b)

Figure 4: Convergence of pressure; (a) Incompressible, (b) compressible variation, Re=1.

The axial velocity and pressure drop profiles through the centerline are presented in Figure 5 for
fine mesh in both incompressible and compressible instances and Re=1. The findings reveal that,
the level of velocity is higher in the compressible case as compared to that for the incompressible
situation. Same behaviour in pressure is observed, where the maximum level of pressure of
around 16 units is detected in the compressible case at the inlet of the channel (see Figure 5b).

Also, more details about the solution components are presented in Table 2.
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Figure 5: Comparison between Incompressible and compressible solutions along centerline;

(a) axial velocity, (b) pressure drop, Re=1, fine mesh (Ms)

Table 2: Maximum value: velocity and pressure; Re-variation

Maximum Incompressible Compressible

value Re=1 | Re=5 | Re=10 | Re=l | Re=5 Re=10
U, 2.00168 | 2.00168 | 2.00168 | 2.01702 | 2.02737 2.03702
U, 0.00002 | 0.00003 | 0.00005 | 0.000102 | 0.00013 0.00017
p 16.1946 | 16.1977 | 16.1978 | 16.2478 | 16.2678 16.2924

Moreover, the results for density and Mach number are presented in Figure 6(a,b) for fine
mesh in compressible instances with Re=1. The profile shows a linear decline in density occurs
throughout the channel, after which the density reduction to zero. An opposite feature is
observed in Mach number behaviour throughout the channel, where a sharp increase is occurred
to reach the maximum level of around 0.0505 units at the outlet of the channel. Thus, from the

low level of Mach number one can conclude that, the ability of the weakly-compressible
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implementations. In addition, the low range of Mach number ((0.0492<Ma<0.0506) demonstrate
that, the piecewise-constant density interpolation is equitable to linear density interpolation. So
we can say that, our algorithm employ effectively to simulate weakly-compressible. Density is
plotted as a function of Mach number in Figure 6¢. The results show that, a linear related is

formed between the density and Mach number.

1.01 0.0506
5 1 0.0504 |- g
1.008 | . | 1
i | 0.0502 |- -
S - 4
| i 8 B ]
1.006 B ] S ook ]
Z =) B 1
o | | £ f ]
- . : B N
< 0.0498 - -1
1.004 - - c - 1
| R z i i
§ ] 0.0496 |~ -1
1.002 - b i 1
B T 0.0494 |~ -1
1 | T NI NI SNENEEN SNATETE SVENETE SN SRR SR R, J 0.0492 I NSNEN SUNENEN SNRATAN SVANAE SYAVANE SYRTA ST ST M
0 02 04 06 08 1 12 14 1.6 18 2 "0 02 04 o8 08 1 12 14 16 18 2
YA z
1.01
1.008 |- -1
1.006 |- -1
> | i
| | i
[a) 5 ]
1.004 |- -1
1.002 |- -1
[ TR TR TR TR TR | J
0.0494 0.0496 0.0498 0.05 0.0502 0.0504

Mach number

Figure 6: (a) density, (b) mach number, (c) density as a function of mach number; Re=1, fine mesh (Mz3)

6. Conclusion

In this paper, the numerical simulation for compressible Newtonian fluid is achieved based on
the Galerkin finite element method in a cylindrical coordinates system. Simultaneously to treat
the non-linear equations, the Newton-Raphson iterative method based on backward difference

scheme is employed as well. For that purpose three finite element meshes are utilized. The
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convergence analysis of velocity and pressure was done for both compressible and
incompressible cases. In this context, the results reveal that, the rate of convergence for
compressible flow is higher thane incompressible for both velocity and pressure solutions. In
addition, the level of Mach number and that relationship with the density has been studied.
Consequently, the results show that the low level of Mach number gives a constant density,

which this in experimental results and with what the other findings.
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